Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jun 16;12(6):1761-1771.
doi: 10.1021/acssynbio.3c00059. Epub 2023 May 17.

Modulating Sensitivity of an Erythromycin Biosensor for Precise High-Throughput Screening of Strains with Different Characteristics

Affiliations

Modulating Sensitivity of an Erythromycin Biosensor for Precise High-Throughput Screening of Strains with Different Characteristics

Yan Wang et al. ACS Synth Biol. .

Abstract

Genetically encoded biosensors are powerful tools for product-driven high-throughput screening in synthetic biology and metabolic engineering. However, most biosensors can only properly function in a limited concentration cutoff, and the incompatible performance characteristics of biosensors will lead to false positives or failure in screening. The transcription factor (TF)-based biosensors are usually organized in modular architecture and function in a regulator-depended manner, whose performance properties can be fine-tuned by modifying the expression level of the TF. In this study, we modulated the performance characteristics, including sensitivity and operating range, of an MphR-based erythromycin biosensor by fine-adjusting regulator expression levels via ribosome-binding site (RBS) engineering and obtained a panel of biosensors with varied sensitivities by iterative fluorescence-assisted cell sorting (FACS) in Escherichia coli to accommodate different screening purposes. To exemplify their application potential, two engineered biosensors with 10-fold different sensitivities were employed in the precise high-throughput screening by microfluidic-based fluorescence-activated droplet sorting (FADS) of Saccharopolyspora erythraea mutant libraries with different starting erythromycin productions, and mutants representing as high as 6.8 folds and over 100% of production improvements were obtained starting from the wild-type strain and the high-producing industrial strain, respectively. This work demonstrated a simple strategy to engineer biosensor performance properties, which was significant to stepwise strain engineering and production improvement.

Keywords: RBS engineering; Saccharopolyspora erythraea; biosensor sensitivity; droplet-based microfluidic; erythromycin; high-throughput screening.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources