Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug 25:888:163823.
doi: 10.1016/j.scitotenv.2023.163823. Epub 2023 May 16.

New insights on municipal solid waste (MSW) landfill plastisphere structure and function

Affiliations

New insights on municipal solid waste (MSW) landfill plastisphere structure and function

Xiaoxing Lin et al. Sci Total Environ. .

Abstract

Plastisphere plays crucial role in global carbon and nitrogen cycles and microplastics formation. Global Municipal Solid Waste (MSW) landfills contain 42 % plastic waste, therefore representing one of the most significant plastispheres. MSW landfills are also the third largest anthropogenic methane sources and the important anthropogenic N2O source. Surprisingly, knowledge of microbiota and the associated microbial carbon and nitrogen cycles of landfill plastispheres is very limited. In this study, we characterized and compared the organic chemicals profile, bacterial community structure and metabolic pathway on plastisphere and the surrounding refuse in a large-scale landfill using GC/MS and 16S rRNA genes high-throughput sequencing, respectively. Landfill plastisphere and the surrounding refuse differed in organic chemicals composition. However, abundant phthalate-like chemicals were determined in both environments, implying the plastics additives leaching. Bacterial colonizing on the plastics surface had significantly higher richness than that in the surrounding refuse. Plastic surface and the surrounding refuse had distinct bacterial community composition. Genera of Sporosarcina, Oceanobacillus and Pelagibacterium were detected on the plastic surface with high abundance, while Ignatzschineria, Paenalcaligenes and Oblitimonas were rich in the surrounding refuse. Typical plastics biodegradation genus Bacillus, Pseudomonas and Paenibacillus were detected in both environments. However, Pseudomonas was dominant in plastic surface (up to 88.73 %), whereas Bacillus was rich in the surrounding refuse (up to 45.19 %). For the carbon and nitrogen cycle, plastisphere was predicted to had significant (P < 0.05) higher functional genes involved in carbon metabolism and nitrification, indicating more activated carbon and nitrogen microbial activity on the plastics surface. Additionally, pH was the main driver in shaping the bacterial community composition on plastic surface. These results indicate that landfill plastispheres serve as unique niches for microbial community habitation and function on microbial carbon and nitrogen cycles. These observations invite further study of the landfill plastispheres ecological effect.

Keywords: Bacterial community structure and function; Carbon and nitrogen cycles; Landfill plastispheres; Microplastics; Plastics surface.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources