Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul;64(7):e148-e155.
doi: 10.1111/epi.17656. Epub 2023 Jun 2.

A novel KCNC1 gain-of-function variant causing developmental and epileptic encephalopathy: "Precision medicine" approach with fluoxetine

Affiliations

A novel KCNC1 gain-of-function variant causing developmental and epileptic encephalopathy: "Precision medicine" approach with fluoxetine

Paolo Ambrosino et al. Epilepsia. 2023 Jul.

Abstract

Variable phenotypes, including developmental encephalopathy with (DEE) or without seizures and myoclonic epilepsy and ataxia due to potassium channel mutation, are caused by pathogenetic variants in KCNC1, encoding for Kv3.1 channel subunits. In vitro, channels carrying most KCNC1 pathogenic variants display loss-of-function features. Here, we describe a child affected by DEE with fever-triggered seizures, caused by a novel de novo heterozygous missense KCNC1 variant (c.1273G>A; V425M). Patch-clamp recordings in transiently transfected CHO cells revealed that, compared to wild-type, Kv3.1 V425M currents (1) were larger, with membrane potentials between -40 and +40 mV; (2) displayed a hyperpolarizing shift in activation gating; (3) failed to inactivate; and (4) had slower activation and deactivation kinetics, consistent with a mixed functional pattern with prevalent gain-of-function effects. Exposure to the antidepressant drug fluoxetine inhibited currents expressed by both wild-type and mutant Kv3.1 channels. Treatment of the proband with fluoxetine led to a rapid and prolonged clinical amelioration, with the disappearance of seizures and an improvement in balance, gross motor skills, and oculomotor coordination. These results suggest that drug repurposing based on the specific genetic defect may provide an effective personalized treatment for KCNC1-related DEEs.

Keywords: KCNC1; drug repurposing; epilepsy; fluoxetine; next generation sequencing; precision medicine.

PubMed Disclaimer

References

REFERENCES

    1. Kaczmarek LK, Zhang Y. Kv3 channels: enablers of rapid firing, neurotransmitter release, and neuronal endurance. Physiol Rev. 2017;97(4):1431-68.
    1. Muona M, Berkovic SF, Dibbens LM, Oliver KL, Maljevic S, Bayly MA, et al. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet. 2015;47(1):39-46.
    1. Nascimento FA, Andrade DM. Myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK) is caused by heterozygous KCNC1 mutations. Epileptic Disord Int Epilepsy J Videotape. 2016;18(S2):135-8.
    1. Li X, Zheng Y, Li S, Nair U, Sun C, Zhao C, et al. Kv3.1 channelopathy: a novel loss-of-function variant and the mechanistic basis of its clinical phenotypes. Ann Transl Med. 2021;9(18):1397.
    1. Park J, Koko M, Hedrich UBS, Hermann A, Cremer K, Haberlandt E, et al. KCNC1-related disorders: new de novo variants expand the phenotypic spectrum. Ann Clin Transl Neurol. 2019;6(7):1319-26.

Publication types

LinkOut - more resources