Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jun:140:102551.
doi: 10.1016/j.artmed.2023.102551. Epub 2023 Apr 17.

Term dependency extraction using rule-based Bayesian Network for medical image retrieval

Affiliations

Term dependency extraction using rule-based Bayesian Network for medical image retrieval

Hajer Ayadi et al. Artif Intell Med. 2023 Jun.

Abstract

Text-Based Medical Image Retrieval (TBMIR) has been known to be successful in retrieving medical images with textual descriptions. Usually, these descriptions are very brief and cannot express the whole visual content of the image in words, hence negatively affect the retrieval performance. One of the solutions offered in the literature is to form a Bayesian Network thesaurus taking advantage of some medical terms extracted from the image datasets. Despite the interestingness of this solution, it is not efficient as it is highly related to the co-occurrence measure, the layer arrangement and the arc directions. A significant drawback of the co-occurrence measure is the generation of a lot of uninteresting co-occurring terms. Several studies applied the association rules mining and its measures to discover the correlation between the terms. In this paper, we propose a new efficient association Rule Based Bayesian Network (R2BN) model for TBMIR using updated medically-dependent features (MDF) based on Unified Medical Language System (UMLS). The MDF are a set of medical terms that refers to the imaging modalities, the image color, the searched object dimension, etc. The proposed model presents the association rules mined from MDF in the form of Bayesian Network model. Then, it exploits the association rule measures (support, confidence, and lift) to prune the Bayesian Network model for efficient computation. The proposed R2BN model is combined with a literature probabilistic model to predict the relevance of an image to a given query. Experiments are carried out with ImageCLEF medical retrieval task collections from 2009 to 2013. Results show that our proposed model enhances significantly the image retrieval accuracy compared to the state-of-the-art retrieval models.

Keywords: Association rules; Bayesian network; Image retrieval; Medically-dependent features; Term dependency; UMLS.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources