Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2024 Jan;54(2):278-288.
doi: 10.1017/S0033291723001319. Epub 2023 May 22.

Prediction of estimated risk for bipolar disorder using machine learning and structural MRI features

Affiliations
Multicenter Study

Prediction of estimated risk for bipolar disorder using machine learning and structural MRI features

Pavol Mikolas et al. Psychol Med. 2024 Jan.

Abstract

Background: Individuals with bipolar disorder are commonly correctly diagnosed a decade after symptom onset. Machine learning techniques may aid in early recognition and reduce the disease burden. As both individuals at risk and those with a manifest disease display structural brain markers, structural magnetic resonance imaging may provide relevant classification features.

Methods: Following a pre-registered protocol, we trained linear support vector machine (SVM) to classify individuals according to their estimated risk for bipolar disorder using regional cortical thickness of help-seeking individuals from seven study sites (N = 276). We estimated the risk using three state-of-the-art assessment instruments (BPSS-P, BARS, EPIbipolar).

Results: For BPSS-P, SVM achieved a fair performance of Cohen's κ of 0.235 (95% CI 0.11-0.361) and a balanced accuracy of 63.1% (95% CI 55.9-70.3) in the 10-fold cross-validation. In the leave-one-site-out cross-validation, the model performed with a Cohen's κ of 0.128 (95% CI -0.069 to 0.325) and a balanced accuracy of 56.2% (95% CI 44.6-67.8). BARS and EPIbipolar could not be predicted. In post hoc analyses, regional surface area, subcortical volumes as well as hyperparameter optimization did not improve the performance.

Conclusions: Individuals at risk for bipolar disorder, as assessed by BPSS-P, display brain structural alterations that can be detected using machine learning. The achieved performance is comparable to previous studies which attempted to classify patients with manifest disease and healthy controls. Unlike previous studies of bipolar risk, our multicenter design permitted a leave-one-site-out cross-validation. Whole-brain cortical thickness seems to be superior to other structural brain features.

Keywords: Diagnostic classification; machine learning; risk of bipolar disorder; structural MRI.

PubMed Disclaimer

Similar articles

Cited by

Publication types