Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Apr 26;11(12):2716-2728.
doi: 10.12998/wjcc.v11.i12.2716.

Severe/critical COVID-19 early warning system based on machine learning algorithms using novel imaging scores

Affiliations

Severe/critical COVID-19 early warning system based on machine learning algorithms using novel imaging scores

Qiu-Yu Li et al. World J Clin Cases. .

Abstract

Background: Early identification of severe/critical coronavirus disease 2019 (COVID-19) is crucial for timely treatment and intervention. Chest computed tomography (CT) score has been shown to be a significant factor in the diagnosis and treatment of pneumonia, however, there is currently a lack of effective early warning systems for severe/critical COVID-19 based on dynamic CT evolution.

Aim: To develop a severe/critical COVID-19 prediction model using a combination of imaging scores, clinical features, and biomarker levels.

Methods: This study used an improved scoring system to extract and describe the chest CT characteristics of COVID-19 patients. The study also took into consideration the general clinical indicators such as dyspnea, oxygen saturation, alternative lengthening of telomeres (ALT), and androgen suppression treatment (AST), which are commonly associated with severe/critical COVID-19 cases. The study employed lasso regression to evaluate and rank the significance of different disease characteristics.

Results: The results showed that blood oxygen saturation, ALT, IL-6/IL-10, combined score, ground glass opacity score, age, crazy paving mode score, qsofa, AST, and overall lung involvement score were key factors in predicting severe/critical COVID-19 cases. The study established a COVID-19 severe/critical early warning system using various machine learning algorithms, including XGBClassifier, Logistic Regression, MLPClassifier, RandomForestClassifier, and AdaBoost Classifier. The study concluded that the prediction model based on the improved CT score and machine learning algorithms is a feasible method for early detection of severe/critical COVID-19 evolution.

Conclusion: The findings of this study suggest that a prediction model based on improved CT scores and machine learning algorithms is effective in detecting the early warning signals of severe/critical COVID-19.

Keywords: COVID-19; Clinical prediction model; Electron computed tomography; Machine learning.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: The authors declare that they have no conflicts of interest with the contents of this article.

Figures

Figure 1
Figure 1
Feature importance derived from the RandomForestClassifier model. The plot shows the relative importance of the variables in the RandomForestClassifier model.
Figure 2
Figure 2
The receiver operating characteristic curves of the different machine learning models that were used in predicting critical/severe coronavirus disease 2019 patents in the validation cohort.
Figure 3
Figure 3
Calibration plot of the different models. The model-predicted probability was plotted on the x-axis; the actual risks were plotted on the y-axis. An ideal calibration plot is indicated by a 45° diagonal line.

Similar articles

Cited by

References

    1. Gao Y, Cai GY, Fang W, Li HY, Wang SY, Chen L, Yu Y, Liu D, Xu S, Cui PF, Zeng SQ, Feng XX, Yu RD, Wang Y, Yuan Y, Jiao XF, Chi JH, Liu JH, Li RY, Zheng X, Song CY, Jin N, Gong WJ, Liu XY, Huang L, Tian X, Li L, Xing H, Ma D, Li CR, Ye F, Gao QL. Machine learning based early warning system enables accurate mortality risk prediction for COVID-19. Nat Commun. 2020;11:5033. - PMC - PubMed
    1. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239–1242. - PubMed
    1. Yu M, Liu Y, Xu D, Zhang R, Lan L, Xu H. Prediction of the Development of Pulmonary Fibrosis Using Serial Thin-Section CT and Clinical Features in Patients Discharged after Treatment for COVID-19 Pneumonia. Korean J Radiol. 2020;21:746–755. - PMC - PubMed
    1. Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, Bonten MMJ, Dahly DL, Damen JAA, Debray TPA, de Jong VMT, De Vos M, Dhiman P, Haller MC, Harhay MO, Henckaerts L, Heus P, Kammer M, Kreuzberger N, Lohmann A, Luijken K, Ma J, Martin GP, McLernon DJ, Andaur Navarro CL, Reitsma JB, Sergeant JC, Shi C, Skoetz N, Smits LJM, Snell KIE, Sperrin M, Spijker R, Steyerberg EW, Takada T, Tzoulaki I, van Kuijk SMJ, van Bussel B, van der Horst ICC, van Royen FS, Verbakel JY, Wallisch C, Wilkinson J, Wolff R, Hooft L, Moons KGM, van Smeden M. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ. 2020;369:m1328. - PMC - PubMed
    1. Xiong Y, Liu Y, Cao L, Wang D, Guo M, Jiang A, Guo D, Hu W, Yang J, Tang Z, Wu H, Lin Y, Zhang M, Zhang Q, Shi M, Zhou Y, Lan K, Chen Y. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect. 2020;9:761–770. - PMC - PubMed