Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2025 Mar 5:2023.05.08.539894.
doi: 10.1101/2023.05.08.539894.

Lipid Transfer Proteins and PI4KIIα Initiate Nuclear p53-Phosphoinositide Signaling

Lipid Transfer Proteins and PI4KIIα Initiate Nuclear p53-Phosphoinositide Signaling

Noah D Carrillo et al. bioRxiv. .

Abstract

Phosphoinositide (PIP n ) messengers are present in non-membranous regions of nuclei where they are assembled into a phosphatidylinositol (PI) 3-kinase (PI3K)/Akt pathway that is distinct from the cytosolic membrane-localized pathway. In the nuclear pathway, PI kinases/phosphatases bind the p53 tumor suppressor protein (wild-type and mutant) to generate p53-PIP n complexes (p53-PIP n signalosome) that activate Akt by a PI3,4,5P 3 -dependent mechanism in non-membranous regions of the nucleus. This pathway is dependent on a source of nuclear PIP n s that is poorly characterized. Here we report that a subset of PI transfer proteins (PITPs), which transport PI between membranes to enable membrane-localized PIP n synthesis, also interact with p53 in the nucleus upon genotoxic stress. Class I PITPs (PITPα/β) specifically supply the PI required for the generation of p53-PIP n complexes and subsequent signaling in the nucleus. Additionally, the PI 4-kinase PI4KIIα binds to p53 and the PITPs to catalyze the formation of p53-PI4P. p53-PI4P is then sequentially phosphorylated to synthesize p53-PIP n complexes that regulate p53 stability, nuclear Akt activation and genotoxic stress resistance. In this way, PITPα/β and PI4KIIα bind p53 and collaborate to initiate p53-PIP n signaling by mechanisms that require PI transfer by PITPα/β and the catalytic activity of PI4KIIα. Moreover, the identification of these critical upstream regulators of p53-PIP n signaling point to PITPα/β and PI4KIIα as novel therapeutic targets in this pathway for diseases like cancer.

Significance statement: PI transfer proteins and a PI 4-kinase initiate nuclear p53-phosphoinositide signaling in membrane-free regions to promote stress resistance.

PubMed Disclaimer

Similar articles

Publication types