Nonmuscle myosin 2 filaments are processive in cells
- PMID: 37218133
- PMCID: PMC10541485
- DOI: 10.1016/j.bpj.2023.05.014
Nonmuscle myosin 2 filaments are processive in cells
Abstract
Directed transport of cellular components is often dependent on the processive movements of cytoskeletal motors. Myosin 2 motors predominantly engage actin filaments of opposing orientation to drive contractile events and are therefore not traditionally viewed as processive. However, recent in vitro experiments with purified nonmuscle myosin 2 (NM2) demonstrated myosin 2 filaments could move processively. Here, we establish processivity as a cellular property of NM2. Processive runs in central nervous system-derived CAD cells are most apparent on bundled actin in protrusions that terminate at the leading edge. We find that processive velocities in vivo are consistent with in vitro measurements. NM2 makes these processive runs in its filamentous form against lamellipodia retrograde flow, though anterograde movement can still occur in the absence of actin dynamics. Comparing the processivity of NM2 isoforms, we find that NM2A moves slightly faster than NM2B. Finally, we demonstrate that this is not a cell-specific property, as we observe processive-like movements of NM2 in the lamella and subnuclear stress fibers of fibroblasts. Collectively, these observations further broaden NM2 functionality and the biological processes in which the already ubiquitous motor can contribute.
Copyright © 2023 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no competing interests.
Figures
Update of
-
Non-muscle myosin 2 filaments are processive in cells.bioRxiv [Preprint]. 2023 Feb 26:2023.02.24.529920. doi: 10.1101/2023.02.24.529920. bioRxiv. 2023. Update in: Biophys J. 2023 Sep 19;122(18):3678-3689. doi: 10.1016/j.bpj.2023.05.014. PMID: 36865321 Free PMC article. Updated. Preprint.
References
-
- Svoboda K., Schmidt C.F., et al. Block S.M. Direct observation of kinesin stepping by optical trapping interferometry. Nature. 1993;365:721–727. - PubMed
-
- Svoboda K., Block S.M. Force and velocity measured for single kinesin molecules. Cell. 1994;77:773–784. - PubMed
-
- Vallee R.B., Wall J.S., et al. Shpetner H.S. Microtubule-associated protein 1C from brain is a two-headed cytosolic dynein. Nature. 1988;332:561–563. - PubMed
-
- Mehta A.D., Rock R.S., et al. Cheney R.E. Myosin-V is a processive actin-based motor. Nature. 1999;400:590–593. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous
