Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Jun 28;123(12):7548-7584.
doi: 10.1021/acs.chemrev.2c00721. Epub 2023 May 23.

Toward Nonepitaxial Laser Diodes

Affiliations
Review

Toward Nonepitaxial Laser Diodes

William B Gunnarsson et al. Chem Rev. .

Abstract

Thin-film organic, colloidal quantum dot, and metal halide perovskite semiconductors are all being pursued in the quest for a wavelength-tunable diode laser technology that does not require epitaxial growth on a traditional semiconductor substrate. Despite promising demonstrations of efficient light-emitting diodes and low-threshold optically pumped lasing in each case, there are still fundamental and practical barriers that must be overcome to reliably achieve injection lasing. This review outlines the historical development and recent advances of each material system on the path to a diode laser. Common challenges in resonator design, electrical injection, and heat dissipation are highlighted, as well as the different optical gain physics that make each system unique. The evidence to date suggests that continued progress for organic and colloidal quantum dot laser diodes will likely hinge on the development of new materials or indirect pumping schemes, while improvements in device architecture and film processing are most critical for perovskite lasers. In all cases, systematic progress will require methods that can quantify how close new devices get with respect to their electrical lasing thresholds. We conclude by discussing the current status of nonepitaxial laser diodes in the historical context of their epitaxial counterparts, which suggests that there is reason to be optimistic for the future.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources