Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct;35(10):13701-13712.
doi: 10.1109/TNNLS.2023.3270938. Epub 2024 Oct 7.

Hue Guidance Network for Single Image Reflection Removal

Hue Guidance Network for Single Image Reflection Removal

Yurui Zhu et al. IEEE Trans Neural Netw Learn Syst. 2024 Oct.

Abstract

Reflection from glasses is ubiquitous in daily life, but it is usually undesirable in photographs. To remove these unwanted noises, existing methods utilize either correlative auxiliary information or handcrafted priors to constrain this ill-posed problem. However, due to their limited capability to describe the properties of reflections, these methods are unable to handle strong and complex reflection scenes. In this article, we propose a hue guidance network (HGNet) with two branches for single image reflection removal (SIRR) by integrating image information and corresponding hue information. The complementarity between image information and hue information has not been noticed. The key to this idea is that we found that hue information can describe reflections well and thus can be used as a superior constraint for the specific SIRR task. Accordingly, the first branch extracts the salient reflection features by directly estimating the hue map. The second branch leverages these effective features, which can help locate salient reflection regions to obtain a high-quality restored image. Furthermore, we design a new cyclic hue loss to provide a more accurate optimization direction for the network training. Experiments substantiate the superiority of our network, especially its excellent generalization ability to various reflection scenes, as compared with state-of-the-arts both qualitatively and quantitatively. Source codes are available at https://github.com/zhuyr97/HGRR.

PubMed Disclaimer

LinkOut - more resources