Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct;35(10):13101-13121.
doi: 10.1109/TNNLS.2023.3270027. Epub 2024 Oct 7.

Toward Explainable Affective Computing: A Review

Toward Explainable Affective Computing: A Review

Karina Cortinas-Lorenzo et al. IEEE Trans Neural Netw Learn Syst. 2024 Oct.

Abstract

Affective computing has an unprecedented potential to change the way humans interact with technology. While the last decades have witnessed vast progress in the field, multimodal affective computing systems are generally black box by design. As affective systems start to be deployed in real-world scenarios, such as education or healthcare, a shift of focus toward improved transparency and interpretability is needed. In this context, how do we explain the output of affective computing models? and how to do so without limiting predictive performance? In this article, we review affective computing work from an explainable AI (XAI) perspective, collecting and synthesizing relevant papers into three major XAI approaches: premodel (applied before training), in-model (applied during training), and postmodel (applied after training). We present and discuss the most fundamental challenges in the field, namely, how to relate explanations back to multimodal and time-dependent data, how to integrate context and inductive biases into explanations using mechanisms such as attention, generative modeling, or graph-based methods, and how to capture intramodal and cross-modal interactions in post hoc explanations. While explainable affective computing is still nascent, existing methods are promising, contributing not only toward improved transparency but, in many cases, surpassing state-of-the-art results. Based on these findings, we explore directions for future research and discuss the importance of data-driven XAI and explanation goals, and explainee needs definition, as well as causability or the extent to which a given method leads to human understanding.

PubMed Disclaimer