Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec;24(4):769-778.
doi: 10.1007/s10561-023-10095-z. Epub 2023 May 24.

Effect of hypoxia on the expression of microRNA in extracellular vesicles of human umbilical cord stem cells in vitro

Affiliations

Effect of hypoxia on the expression of microRNA in extracellular vesicles of human umbilical cord stem cells in vitro

Huifen Zang et al. Cell Tissue Bank. 2023 Dec.

Abstract

Mesenchymal stem cells (MSCs) derived extracellular vesicles, which have been shown to possess therapeutic effects for many diseases. However, how hypoxic conditions would affect exosomal microRNA expression in human umbilical cord MSCs (hUC-MSCs) is currently not investigated. This study aims to investigate the potential function of in vitro microRNAs of hUC-MSC cultured under normoxic and hypoxic conditions. Extracellular vesicles secreted from hUC-MSCs cultured in normoxic (21% O2) and hypoxic (5% O2) conditions were collected for microRNA identification. Zeta View Laser Scattering and transmission electron microscopy were used to observe the size and morphology of extracellular vesicles. qRT-PCR was performed to measure the expression of related microRNAs. The Gene Ontology and KEGG pathway were used to predict the function of microRNAs. Finally, the effects of hypoxia on the expression of related mRNAs and cellular activity were examined. This study identified 35 upregulated and 8 downregulated microRNAs in the hypoxia group. We performed target genes analysis to explore the potential function of these microRNA upregulated in the hypoxia group. Significant enrichment of the cell proliferation, pluripotency of stem cells, MAPK, Wnt, and adherens junction pathways were observed in the GO and KEGG pathways. Under hypoxic conditions, the expression levels of 7 target genes were lower than that of the normal environment. In conclusion, this study demonstrated for the first time that microRNA expression in extracellular vesicles of human umbilical vein stem cells cultured under hypoxia is different from that under normal conditions, and these microRNAs may be markers for detecting hypoxia.

Keywords: Extracellular vesicles; Human umbilical cord mesenchymal stem cells; Hypoxia; MicroRNAs.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Almeria C, Weiss R, Roy M et al (2019) Hypoxia conditioned mesenchymal stem cell-derived extracellular vesicles induce increased vascular tube formation in vitro. Front Bioeng Biotechnol 7:292 - DOI - PubMed - PMC
    1. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355 - DOI - PubMed
    1. Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359 - DOI - PubMed - PMC
    1. Biancone L, Bruno S, Deregibus MC, Tetta C, Camussi G (2012) Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant 27(8):3037–3042 - DOI - PubMed
    1. Bruning U, Cerone L, Neufeld Z et al (2011) MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol Cell Biol 31(19):4087–4096 - DOI - PubMed - PMC

LinkOut - more resources