Additive Engineering for Stable and Efficient Dion-Jacobson Phase Perovskite Solar Cells
- PMID: 37221320
- PMCID: PMC10205963
- DOI: 10.1007/s40820-023-01110-9
Additive Engineering for Stable and Efficient Dion-Jacobson Phase Perovskite Solar Cells
Abstract
Because of their better chemical stability and fascinating anisotropic characteristics, Dion-Jacobson (DJ)-layered halide perovskites, which owe crystallographic two-dimensional structures, have fascinated growing attention for solar devices. DJ-layered halide perovskites have special structural and photoelectronic features that allow the van der Waals gap to be eliminated or reduced. DJ-layered halide perovskites have improved photophysical characteristics, resulting in improved photovoltaic performance. Nevertheless, owing to the nature of the solution procedure and the fast crystal development of DJ perovskite thin layers, the precursor compositions and processing circumstances can cause a variety of defects to occur. The application of additives can impact DJ perovskite crystallization and film generation, trap passivation in the bulk and/or at the surface, interface structure, and energetic tuning. This study discusses recent developments in additive engineering for DJ multilayer halide perovskite film production. Several additive-assisted bulk and interface optimization methodologies are summarized. Lastly, an overview of research developments in additive engineering in the production of DJ-layered halide perovskite solar cells is offered.
Keywords: Additive compounds; Defect passivation; Dion–Jacobson phases; Perovskite solar cells; Stability.
© 2023. The Author(s).
Conflict of interest statement
The authors declare no conflict of interest.
Figures













Similar articles
-
Layered 2D Halide Perovskites beyond the Ruddlesden-Popper Phase: Tailored Interlayer Chemistries for High-Performance Solar Cells.Angew Chem Int Ed Engl. 2022 Mar 1;61(10):e202112022. doi: 10.1002/anie.202112022. Epub 2022 Jan 4. Angew Chem Int Ed Engl. 2022. PMID: 34761495 Review.
-
Layered Low-Dimensional Ruddlesden-Popper and Dion-Jacobson Perovskites: From Material Properties to Photovoltaic Device Performance.ChemSusChem. 2023 Oct 6;16(19):e202300736. doi: 10.1002/cssc.202300736. Epub 2023 Aug 1. ChemSusChem. 2023. PMID: 37321966 Review.
-
The rise of quasi-2D Dion-Jacobson perovskites for photovoltaics.Nanoscale Horiz. 2023 Nov 20;8(12):1628-1651. doi: 10.1039/d3nh00209h. Nanoscale Horiz. 2023. PMID: 37740351 Review.
-
Thiocyanate-Passivated Diaminonaphthalene-Incorporated Dion-Jacobson Perovskite for Highly Efficient and Stable Solar Cells.ACS Appl Mater Interfaces. 2022 Jan 12;14(1):850-860. doi: 10.1021/acsami.1c19546. Epub 2022 Jan 3. ACS Appl Mater Interfaces. 2022. PMID: 34978806
-
The Synergistic Effect of Additives for Formamidinium-Based Inverted Dion-Jacobson 2D Perovskite Solar Cells with Enhanced Photovoltaic Performance.ACS Appl Mater Interfaces. 2023 Dec 20;15(50):58286-58295. doi: 10.1021/acsami.3c11114. Epub 2023 Dec 5. ACS Appl Mater Interfaces. 2023. PMID: 38052074
Cited by
-
Tuning Isomerism Effect in Organic Bulk Additives Enables Efficient and Stable Perovskite Solar Cells.Nanomicro Lett. 2025 Jan 10;17(1):107. doi: 10.1007/s40820-024-01613-z. Nanomicro Lett. 2025. PMID: 39792240 Free PMC article.
-
Low-Cost, Scalable Fabrication of Multi-Dimensional Perovskite Solar Cells and Modules Assisted by Mechanical Scribing.Small Methods. 2025 Jan;9(1):e2400850. doi: 10.1002/smtd.202400850. Epub 2024 Aug 25. Small Methods. 2025. PMID: 39183506 Free PMC article.
-
Spacer Loss upon 2D Ruddlesden-Popper Halide Perovskite Annealing Raises Film Properties and Solar Cell Performances.Nanomaterials (Basel). 2025 May 16;15(10):750. doi: 10.3390/nano15100750. Nanomaterials (Basel). 2025. PMID: 40423140 Free PMC article.
References
-
- Dahal B, Li W. Configuration of methylammonium lead iodide perovskite solar cell and its effect on the device's performance: a review. Adv. Mater. Interfaces. 2022;9(19):2200042. doi: 10.1002/admi.202200042. - DOI
-
- Dou Q, Whatley T, Syed T, Wei W, Wang H. Carbon nanomaterials-polymer composites for perovskite solar cells: preparation, properties and applications. J. Mater. Chem. A. 2022;10(37):19211–19230. doi: 10.1039/d2ta02175g. - DOI
-
- E.C. Kohlrausch, D.d.V. Freitas, C.I. da Silva Filho, L.F. Loguercio, L.A. Santa-Cruz et al., Advances in carbon materials applied to carbon-based perovskite solar cells. Energy Technol. 2200676 (2023). 10.1002/ente.202200676
-
- Luo X, Lin X, Gao F, Zhao Y, Li X, et al. Recent progress in perovskite solar cells: from device to commercialization. Sci. China-Chem. 2022;65(12):2369–2416. doi: 10.1007/s11426-022-1426-x. - DOI
-
- Sharma D, Mehra R, Raj B. Comparative study of hole transporting layers commonly used in high-efficiency perovskite solar cells. J. Mater. Sci. 2022;57(45):21172–21191. doi: 10.1007/s10853-022-07958-3. - DOI
Publication types
LinkOut - more resources
Full Text Sources
Miscellaneous