Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug;620(7974):545-551.
doi: 10.1038/s41586-023-06207-0. Epub 2023 May 24.

Inverted perovskite solar cells using dimethylacridine-based dopants

Affiliations

Inverted perovskite solar cells using dimethylacridine-based dopants

Qin Tan et al. Nature. 2023 Aug.

Abstract

Doping of perovskite semiconductors1 and passivation of their grain boundaries2 remain challenging but essential for advancing high-efficiency perovskite solar cells. Particularly, it is crucial to build perovskite/indium tin oxide (ITO) Schottky contact based inverted devices without predepositing a layer of hole-transport material3-5. Here we report a dimethylacridine-based molecular doping process used to construct a well-matched p-perovskite/ITO contact, along with all-round passivation of grain boundaries, achieving a certified power conversion efficiency (PCE) of 25.39%. The molecules are shown to be extruded from the precursor solution to the grain boundaries and the bottom of the film surface in the chlorobenzene-quenched crystallization process, which we call a molecule-extrusion process. The core coordination complex between the deprotonated phosphonic acid group of the molecule and lead polyiodide of perovskite is responsible for both mechanical absorption and electronic charge transfer, and leads to p-type doping of the perovskite film. We created an efficient device with a PCE of 25.86% (reverse scan) and that maintained 96.6% of initial PCE after 1,000 h of light soaking.

PubMed Disclaimer

References

    1. Euvrard, J., Yan, Y. & Mitzi, D. B. Electrical doping in halide perovskites. Nat. Rev. Mater. 6, 531–549 (2021). - DOI
    1. Aydin, E., Bastiani, M. D. & Wolf, S. D. Defect and contact passivation for perovskite solar cells. Adv. Mater. 31, 1900428 (2019). - DOI
    1. Wu, W. Q. et al. Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. Nat. Commun. 9, 1625 (2018). - DOI - PubMed - PMC
    1. Prasanna, R. et al. Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nat. Energy 4, 939–947 (2019). - DOI
    1. Ye, S. et al. A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J. Am. Chem. Soc. 139, 7504–7512 (2017). - DOI - PubMed

LinkOut - more resources