Phenomics and Robust Multiomics Data for Cardiovascular Disease Subtyping
- PMID: 37226730
- PMCID: PMC10330619
- DOI: 10.1161/ATVBAHA.122.318892
Phenomics and Robust Multiomics Data for Cardiovascular Disease Subtyping
Abstract
The complex landscape of cardiovascular diseases encompasses a wide range of related pathologies arising from diverse molecular mechanisms and exhibiting heterogeneous phenotypes. This variety of manifestations poses significant challenges in the development of treatment strategies. The increasing availability of precise phenotypic and multiomics data of cardiovascular disease patient populations has spurred the development of a variety of computational disease subtyping techniques to identify distinct subgroups with unique underlying pathogeneses. In this review, we outline the essential components of computational approaches to select, integrate, and cluster omics and clinical data in the context of cardiovascular disease research. We delve into the challenges faced during different stages of the analysis, including feature selection and extraction, data integration, and clustering algorithms. Next, we highlight representative applications of subtyping pipelines in heart failure and coronary artery disease. Finally, we discuss the current challenges and future directions in the development of robust subtyping approaches that can be implemented in clinical workflows, ultimately contributing to the ongoing evolution of precision medicine in health care.
Keywords: algorithms; coronary artery disease; heart failure; multiomics; precision medicine.
Conflict of interest statement
Figures
Similar articles
-
Harnessing Multi-Omics and Predictive Modeling for Climate-Resilient Crop Breeding: From Genomes to Fields.Genes (Basel). 2025 Jul 10;16(7):809. doi: 10.3390/genes16070809. Genes (Basel). 2025. PMID: 40725465 Free PMC article. Review.
-
A robust diagnostic model for high-risk MASH: integrating clinical parameters and circulating biomarkers through a multi-omics approach.Hepatol Int. 2025 Aug;19(4):820-835. doi: 10.1007/s12072-025-10792-9. Epub 2025 Apr 9. Hepatol Int. 2025. PMID: 40205303
-
Comparative analysis of statistical and deep learning-based multi-omics integration for breast cancer subtype classification.J Transl Med. 2025 Jul 1;23(1):709. doi: 10.1186/s12967-025-06662-5. J Transl Med. 2025. PMID: 40598554 Free PMC article.
-
Multiomics insight into the role of glucagon-like peptide-1 receptor agonists in heart failure.ESC Heart Fail. 2025 Aug;12(4):2958-2968. doi: 10.1002/ehf2.15310. Epub 2025 Apr 28. ESC Heart Fail. 2025. PMID: 40290076 Free PMC article.
-
Applications of artificial intelligence multiomics in precision oncology.J Cancer Res Clin Oncol. 2023 Jan;149(1):503-510. doi: 10.1007/s00432-022-04161-4. Epub 2022 Jul 7. J Cancer Res Clin Oncol. 2023. PMID: 35796775 Free PMC article. Review.
Cited by
-
Multi-Omics and Single-Cell Omics: New Tools in Drug Target Discovery.Arterioscler Thromb Vasc Biol. 2024 Apr;44(4):759-762. doi: 10.1161/ATVBAHA.124.320686. Epub 2024 Mar 27. Arterioscler Thromb Vasc Biol. 2024. PMID: 38536899 Free PMC article. No abstract available.
-
How pharmacology can aid in the diagnosis of mental disorders.Naunyn Schmiedebergs Arch Pharmacol. 2025 Feb;398(2):1099-1110. doi: 10.1007/s00210-024-03413-z. Epub 2024 Sep 4. Naunyn Schmiedebergs Arch Pharmacol. 2025. PMID: 39230588 Free PMC article. Review.
-
Integrating Computational and Biological Hemodynamic Approaches to Improve Modeling of Atherosclerotic Arteries.Adv Sci (Weinh). 2024 Jul;11(26):e2307627. doi: 10.1002/advs.202307627. Epub 2024 May 5. Adv Sci (Weinh). 2024. PMID: 38704690 Free PMC article. Review.
-
Cancer phenomics research hotspots and development trends: a bibliometric analysis from 2000 to 2023.Discov Oncol. 2024 Dec 19;15(1):811. doi: 10.1007/s12672-024-01710-w. Discov Oncol. 2024. PMID: 39695032 Free PMC article.
-
Joint clinical and molecular subtyping of COPD with variational autoencoders.medRxiv [Preprint]. 2024 Jan 10:2023.08.19.23294298. doi: 10.1101/2023.08.19.23294298. medRxiv. 2024. PMID: 38260473 Free PMC article. Preprint.
References
-
- Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, Abbastabar H, Abd-Allah F, Abdela J, Abdelalim A. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392:1736–1788. doi: 10.1016/S0140-6736(18)32203-7 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources