Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul;50(7):4491-4504.
doi: 10.1002/mp.16443. Epub 2023 May 25.

Secondary radiation dose modeling in passive scattering and pencil beam scanning very high energy electron (VHEE) radiation therapy

Affiliations

Secondary radiation dose modeling in passive scattering and pencil beam scanning very high energy electron (VHEE) radiation therapy

Umberto Deut et al. Med Phys. 2023 Jul.

Abstract

Background: Electrons with kinetic energy up to a few hundred MeV, also called very high energy electrons (VHEE), are currently considered a promising technique for the future of radiation therapy (RT) and in particular ultra-high dose rate (UHDR) therapy. However, the feasibility of a clinical application is still being debated and VHEE therapy remains an active area of research for which the optimal conformal technique is also yet to be determined.

Purpose: In this work, we will apply two existing formalisms based on analytical Gaussian multiple-Coulomb scattering theory and Monte Carlo (MC) simulations to study and compare the electron and bremsstrahlung photon dose distributions arising from two beam delivery systems (passive scattering with or without a collimator or active scanning).

Methods: We therefore tested the application of analytical and MC models to VHEE beams and assessed their performance and parameterization in the energy range of 6-200 MeV. The optimized electron beam fluence, the bremsstrahlung, an estimation of central-axis and off-axis x-ray dose at the practical range and neutron contributions to the total dose, along with an extended parameterization for the photon dose model were developed, together with a comparison between double scattering (DS) and pencil beam scanning (PBS) techniques. MC simulations were performed with the TOPAS/Geant4 toolkit to verify the dose distributions predicted by the analytical calculations.

Results: The results for the clinical energy range (between 6 and 20 MeV) as well as for higher energies (VHEE range between 20 and 200 MeV) and for two treatment field sizes (5 × 5 and 10 × 10 cm2 ) are reported, showing a reasonable agreement with MC simulations with mean differences below 2.1%. The relative contributions of photons generated in the medium or by the scattering system along the central-axis (up to 50% of the total dose) are also illustrated, along with their relative variations with electron energy.

Conclusions: The fast analytical models parametrized in this study allow an estimation of the amount of photons produced behind the practical range by a DS system with an accuracy lower than 3%, providing important information for the eventual design of a VHEE system. The results of this work could support future research on VHEE radiotherapy.

Keywords: Monte Carlo simulations; VHEE; double scattering; pencil beam scanning; secondary particles; very high energy electrons.

PubMed Disclaimer

Similar articles

Cited by

References

REFERENCES

    1. DesRosiers C, Moskvin V, Bielajew AF, Papiez L. 150-250 meV electron beams in radiation therapy. Phys Med Biol. 2000;45(7):1781-1805.
    1. Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014;6(245):245ra93.
    1. Schüler E, Acharya M, Montay-Gruel P, Loo BW Jr, Vozenin MC, Maxim PG. Ultra-high dose rate electron beams and the FLASH effect: from preclinical evidence to a new radiotherapy paradigm. Med Phys. 2022;49(3):2082-2095.
    1. Maxim PG, Tantawi SG. PHASER: a platform for clinical translation of FLASH cancer radiotherapy. Radiother Oncol. 2019;139:28-33.
    1. Faillace L, Alesini D, Bisogni G, et al. Perspectives in linear accelerator for FLASH VHEE: study of a compact C-band system. Phys Med. 2022;104:149-159.

LinkOut - more resources