Evaluation of low-cost SARS-CoV-2 RNA purification methods for viral quantification by RT-qPCR and next-generation sequencing analysis: Implications for wider wastewater-based epidemiology adoption
- PMID: 37228686
- PMCID: PMC10188194
- DOI: 10.1016/j.heliyon.2023.e16130
Evaluation of low-cost SARS-CoV-2 RNA purification methods for viral quantification by RT-qPCR and next-generation sequencing analysis: Implications for wider wastewater-based epidemiology adoption
Abstract
Based Epidemiology (WBE) consists of quantifying biomarkers in sewerage systems to derive real-time information on the health and/or lifestyle of the contributing population. WBE usefulness was vastly demonstrated in the context of the COVID-19 pandemic. Many methods for SARS-CoV-2 RNA determination in wastewater were devised, which vary in cost, infrastructure requirements and sensitivity. For most developing countries, implementing WBE for viral outbreaks, such as that of SARS-CoV-2, proved challenging due to budget, reagent availability and infrastructure constraints. In this study, we assessed low-cost methods for SARS-CoV-2 RNA quantification by RT-qPCR, and performed variant identification by NGS in wastewater samples. Results showed that the effect of adjusting pH to 4 and/or adding MgCl2 (25 mM) was negligible when using the adsorption-elution method, as well as basal physicochemical parameters in the sample. In addition, results supported the standardized use of linear rather than plasmid DNA for a more accurate viral RT-qPCR estimation. The modified TRIzol-based purification method in this study yielded comparable RT-qPCR estimation to a column-based approach, but provided better NGS results, suggesting that column-based purification for viral analysis should be revised. Overall, this work provides evaluation of a robust, sensitive and cost-effective method for SARS-CoV-2 RNA analysis that could be implemented for other viruses, for a wider WEB adoption.
Keywords: COVID-19; RNA purification; SARS-CoV-2; Viral genomic surveillance; Virus quantification; Wastewater-based epidemiology.
© 2023 The Authors.
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures
References
-
- Berchenko Y., Manor Y., Freedman L.S., Kaliner E., Grotto I., Mendelson E., Huppert A. Estimation of polio infection prevalence from environmental surveillance data. Sci. Transl. Med. 2017;9(383) - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous
