Homotropic Cooperativity in Iron-Catalyzed Alkyne Cyclotrimerizations
- PMID: 37229435
- PMCID: PMC10204060
- DOI: 10.1021/acscatal.3c00764
Homotropic Cooperativity in Iron-Catalyzed Alkyne Cyclotrimerizations
Abstract
Enhancing catalytic activity through synergic effects is a current challenge in homogeneous catalysis. In addition to the well-established metal-metal and metal-ligand cooperation, we showcase here an example of self-activation by the substrate in controlling the catalytic activity of the two-coordinate iron complex [Fe(2,6-Xyl2C6H3)2] (1, Xyl = 2,6-Me2C6H3). This behavior was observed for aryl acetylenes in their regioselective cyclotrimerization to 1,2,4-(aryl)-benzenes. Two kinetically distinct regimes are observed dependent upon the substrate-to-catalyst ratio ([RC≡CH]0/[1]0), referred to as the low ([RC≡CH]0/[1]0 < 40) and high ([RC≡CH]0/[1]0 > 40) regimes. Both showed sigmoidal kinetic response, with positive Hill indices of 1.85 and 3.62, respectively, and nonlinear Lineweaver-Burk replots with an upward curvature, which supports positive substrate cooperativity. Moreover, two alkyne molecules participate in the low regime, whereas up to four are involved in the high regime. The second-order rate dependence on 1 indicates that binuclear complexes are the catalytically competent species in both regimes, with that in the high one being 6 times faster than that involved in the low one. Moreover, Eyring plot analyses revealed two different catalytic cycles, with a rate-determining step more endergonic in the low regime than in the high one, but with a more ordered transition state in the high regime than in the low one.
© 2023 The Authors. Published by American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures









Similar articles
-
Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.J Am Chem Soc. 2011 Oct 12;133(40):15958-78. doi: 10.1021/ja202411v. Epub 2011 Sep 15. J Am Chem Soc. 2011. PMID: 21919447
-
Evaluating the Effect of Catalyst Nuclearity in Ni-Catalyzed Alkyne Cyclotrimerizations.J Am Chem Soc. 2015 Jul 1;137(25):8042-5. doi: 10.1021/jacs.5b04990. Epub 2015 Jun 17. J Am Chem Soc. 2015. PMID: 26067399
-
Markovnikov Hydrosilylation of Alkynes with Tertiary Silanes Catalyzed by Dinuclear Cobalt Carbonyl Complexes with NHC Ligation.J Am Chem Soc. 2021 Aug 18;143(32):12847-12856. doi: 10.1021/jacs.1c06583. Epub 2021 Aug 4. J Am Chem Soc. 2021. PMID: 34347477
-
Catalytic C-H bond amination from high-spin iron imido complexes.J Am Chem Soc. 2011 Apr 6;133(13):4917-23. doi: 10.1021/ja110066j. Epub 2011 Mar 15. J Am Chem Soc. 2011. PMID: 21405138
-
Alkenes in [2+2+2] Cycloadditions.Chemistry. 2016 May 10;22(20):6720-39. doi: 10.1002/chem.201504987. Epub 2016 Feb 25. Chemistry. 2016. PMID: 26918553 Review.
References
-
- Kar S.; Milstein D. Sustainable catalysis with fluxional acridine-based PNP pincer complexes. Chem. Commun. 2022, 58, 3731–3746. 10.1039/D2CC00247G. - DOI - PMC - PubMed
- Mondal R.; Guin A. K.; Chakraborty G.; Paul N. D. Metal–ligand cooperative approaches in homogeneous catalysis using transition metal complex catalysts of redox noninnocent ligands. Org. Biomol. Chem. 2022, 20, 296–328. 10.1039/D1OB01153G. - DOI - PubMed
- Whited M. T. Pincer-supported metal/main-group bonds as platforms for cooperative transformations. Dalton Trans. 2021, 50, 16443–16450. 10.1039/D1DT02739E. - DOI - PubMed
- Gonçalves T. P.; Dutta I.; Huang K.-W. Aromaticity in catalysis: metal ligand cooperation via ligand dearomatization and rearomatization. Chem. Commun. 2021, 57, 3070–3082. 10.1039/D1CC00528F. - DOI - PubMed
- Vogt M.; Langer R. The Pincer Platform Beyond Classical Coordination Patterns. Eur. J. Inorg. Chem. 2020, 2020, 3885–3898. 10.1002/ejic.202000513. - DOI
- Elsby M. R.; Baker R. T. Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts. Chem. Soc. Rev. 2020, 49, 8933–8987. 10.1039/D0CS00509F. - DOI - PubMed
- Alig L.; Fritz M.; Schneider S. First-Row Transition Metal (De)Hydrogenation Catalysis Based On Functional Pincer Ligands. Chem. Rev. 2019, 119, 2681–2751. 10.1021/acs.chemrev.8b00555. - DOI - PubMed
- Dub P. A.; Gordon J. C. The role of the metal- bound N–H functionality in Noyori- type molecular catalysts. Nat. Rev. Chem. 2018, 2, 396–408. 10.1038/s41570-018-0049-z. - DOI
- Kuijpers P. F.; van der Vlugt J. I.; Schneider S.; de Bruin B. Nitrene Radical Intermediates in Catalytic Synthesis. Chem. – Eur. J. 2017, 23, 13819–13829. 10.1002/chem.201702537. - DOI - PMC - PubMed
- Berben L. A.; de Bruin B.; Heyduk A. F. Non-innocent ligands. Chem. Commun. 2015, 51, 1553–1554. 10.1039/C4CC90480J. - DOI - PubMed
- Lyaskovskyy V.; de Bruin B. Redox Non-Innocent Ligands: Versatile New Tools to Control Catalytic Reactions. ACS Catal. 2012, 2, 270–279. 10.1021/cs200660v. - DOI
-
- Sciortino G.; Maseras F. Computational Study of Homogeneous Multimetallic Cooperative Catalysis. Top. Catal. 2022, 65, 105–117. 10.1007/s11244-021-01493-2. - DOI
- Maity R.; Birenheide B. S.; Breher F.; Sarkar B. Cooperative Effects in Multimetallic Complexes Applied in Catalysis. ChemCatChem 2021, 13, 2337–2370. 10.1002/cctc.202001951. - DOI
- Ghosh A. C.; Duboc C.; Gennari M. Synergy between metals for small molecule activation: Enzymes and bio-inspired complexes. Coord. Chem. Rev. 2021, 428, 21360610.1016/j.ccr.2020.213606. - DOI
- Wang Q.; Brooks S. H.; Liu T.; Tomson N. C. Tuning metal–metal interactions for cooperative small molecule activation. Chem. Commun. 2021, 57, 2839–2853. 10.1039/D0CC07721F. - DOI - PMC - PubMed
- Campos J. Bimetallic cooperation across the periodic table. Nat. Chem. Rev. 2020, 4, 696–702. 10.1038/s41570-020-00226-5. - DOI - PubMed
- Xiong N.; Zhang G.; Sun X.; Zeng R. Metal-Metal Cooperation in Dinucleating Complexes Involving Late Transition Metals Directed towards Organic Catalysis. Chin. J. Chem. 2020, 38, 185–201. 10.1002/cjoc.201900371. - DOI
- Xu W.; Li M.; Qiao L.; Xie J. Recent advances of dinuclear nickel- and palladium-complexes in homogeneous catalysis. Chem. Commun. 2020, 56, 8524–8536. 10.1039/D0CC02542A. - DOI - PubMed
- Buchwalter P.; Rosé J.; Braunstein P. Multimetallic Catalysis Based on Heterometallic Complexes and Clusters. Chem. Rev. 2015, 115, 28–126. 10.1021/cr500208k. - DOI - PubMed
LinkOut - more resources
Full Text Sources