Whole-brain network transitions within the framework of ignition and transfer entropy following VIM-MRgFUS in essential tremor patients
- PMID: 37230462
- DOI: 10.1016/j.brs.2023.05.006
Whole-brain network transitions within the framework of ignition and transfer entropy following VIM-MRgFUS in essential tremor patients
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) lesioning of the ventralis intermedius nucleus (VIM) has shown promise in treating drug-refractory essential tremor (ET). It remains unknown whether focal VIM lesions by MRgFUS have broader restorative effects on information flow within the whole-brain network of ET patients. We applied an information-theoretical approach based on intrinsic ignition and the concept of transfer entropy (TE) to assess the spatiotemporal dynamics after VIM-MRgFUS. Eighteen ET patients (mean age 71.44 years) underwent repeated 3T resting-state functional magnetic resonance imaging combined with Clinical Rating Scale for Tremor (CRST) assessments one day before (T0) and one month (T1) and six months (T2) post-MRgFUS, respectively. We observed increased whole brain ignition-driven mean integration (IDMI) at T1 (p < 0.05), along with trend increases at T2. Further, constraining to motor network nodes, we identified significant increases in information-broadcasting (bilateral supplementary motor area (SMA) and left cerebellar lobule III) and information-receiving (right precentral gyrus) at T1. Remarkably, increased information-broadcasting in bilateral SMA was correlated with relative improvement of the CRST in the treated hand. In addition, causal TE-based effective connectivity (EC) at T1 showed an increase from right SMA to left cerebellar lobule crus II and from left cerebellar lobule III to right thalamus. In conclusion, results suggest a change in information transmission capacity in ET after MRgFUS and a shift towards a more integrated functional state with increased levels of global and directional information flow.
Keywords: Essential tremor; Information theory; Intrinsic ignition framework; MR-Guided focused ultrasound; Transfer entropy; Ventral intermediate nucleus.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous
