Distinct Effects of Familial Parkinson's Disease-Associated Mutations on α-Synuclein Phase Separation and Amyloid Aggregation
- PMID: 37238596
- PMCID: PMC10216457
- DOI: 10.3390/biom13050726
Distinct Effects of Familial Parkinson's Disease-Associated Mutations on α-Synuclein Phase Separation and Amyloid Aggregation
Abstract
The Lewy bodies and Lewy neurites are key pathological hallmarks of Parkinson's disease (PD). Single-point mutations associated with familial PD cause α-synuclein (α-Syn) aggregation, leading to the formation of Lewy bodies and Lewy neurites. Recent studies suggest α-Syn nucleates through liquid-liquid phase separation (LLPS) to form amyloid aggregates in a condensate pathway. How PD-associated mutations affect α-Syn LLPS and its correlation with amyloid aggregation remains incompletely understood. Here, we examined the effects of five mutations identified in PD, A30P, E46K, H50Q, A53T, and A53E, on the phase separation of α-Syn. All other α-Syn mutants behave LLPS similarly to wild-type (WT) α-Syn, except that the E46K mutation substantially promotes the formation of α-Syn condensates. The mutant α-Syn droplets fuse to WT α-Syn droplets and recruit α-Syn monomers into their droplets. Our studies showed that α-Syn A30P, E46K, H50Q, and A53T mutations accelerated the formation of amyloid aggregates in the condensates. In contrast, the α-Syn A53E mutant retarded the aggregation during the liquid-to-solid phase transition. Finally, we observed that WT and mutant α-Syn formed condensates in the cells, whereas the E46K mutation apparently promoted the formation of condensates. These findings reveal that familial PD-associated mutations have divergent effects on α-Syn LLPS and amyloid aggregation in the phase-separated condensates, providing new insights into the pathogenesis of PD-associated α-Syn mutations.
Keywords: Parkinson’s disease (PD); amyloid aggregation; liquid–liquid phase separation (LLPS); mutation; phase transition; α-synuclein.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Karpinar D.P., Balija M.B., Kügler S., Opazo F., Rezaei-Ghaleh N., Wender N., Kim H.Y., Taschenberger G., Falkenburger B.H., Heise H., et al. Pre-fibrillar alpha-synuclein variants with impaired beta-structure increase neurotoxicity in Parkinson’s disease models. EMBO J. 2009;28:3256–3268. doi: 10.1038/emboj.2009.257. - DOI - PMC - PubMed
-
- Volpicelli-Daley L.A., Luk K.C., Patel T.P., Tanik S.A., Riddle D.M., Stieber A., Meaney D.F., Trojanowski J.Q., Lee V.M. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron. 2011;72:57–71. doi: 10.1016/j.neuron.2011.08.033. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
