Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 May 12;130(19):192501.
doi: 10.1103/PhysRevLett.130.192501.

Mass Measurement of Upper fp-Shell N=Z-2 and N=Z-1 Nuclei and the Importance of Three-Nucleon Force along the N=Z Line

Affiliations

Mass Measurement of Upper fp-Shell N=Z-2 and N=Z-1 Nuclei and the Importance of Three-Nucleon Force along the N=Z Line

M Wang et al. Phys Rev Lett. .

Abstract

Using a novel method of isochronous mass spectrometry, the masses of ^{62}Ge, ^{64}As, ^{66}Se, and ^{70}Kr are measured for the first time, and the masses of ^{58}Zn, ^{61}Ga, ^{63}Ge, ^{65}As, ^{67}Se, ^{71}Kr, and ^{75}Sr are redetermined with improved accuracy. The new masses allow us to derive residual proton-neutron interactions (δV_{pn}) in the N=Z nuclei, which are found to decrease (increase) with increasing mass A for even-even (odd-odd) nuclei beyond Z=28. This bifurcation of δV_{pn} cannot be reproduced by the available mass models, nor is it consistent with expectations of a pseudo-SU(4) symmetry restoration in the fp shell. We performed ab initio calculations with a chiral three-nucleon force (3NF) included, which indicate the enhancement of the T=1 pn pairing over the T=0 pn pairing in this mass region, leading to the opposite evolving trends of δV_{pn} in even-even and odd-odd nuclei.

PubMed Disclaimer

LinkOut - more resources