Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug 15;231(Pt 3):116241.
doi: 10.1016/j.envres.2023.116241. Epub 2023 May 25.

Degradation of cefadroxil drug by newly designed solar light responsive alcoholic template-based lanthanum ferrite nanoparticles

Affiliations

Degradation of cefadroxil drug by newly designed solar light responsive alcoholic template-based lanthanum ferrite nanoparticles

Ammara Nazir et al. Environ Res. .

Retraction in

Abstract

In this work, lanthanum ferrite nanoparticles were synthesized via a simple co-precipitation method. Two different templates, namely sorbitol and mannitol, were used in this synthesis to tune the optical, structural, morphological, and photocatalytic properties of lanthanum ferrite. The synthesized lanthanum ferrite-sorbitol (LFOCo-So) and lanthanum ferrite-mannitol (LFOCo-Mo) were investigated through Ultraviolet-Visible (UV-Vis), X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR), Raman, Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX), and photoluminescence (PL) techniques to study the effects of the templates on the tunable properties of lanthanum ferrite nanoparticles. The UV-Vis study revealed a remarkably small bandgap (2.09 eV) of LFOCo-So compared to the LFOCo-Mo having a band gap of 2.46 eV. XRD analysis revealed a single-phased structure of LFOCo-So, whereas LFOCo-Mo showed different phases. The calculated crystallite sizes of LFOCo-So and LFOCo-Mo were 22 nm and 39 nm, respectively. FTIR spectroscopy indicated the characteristics of metal-oxygen vibrations of perovskites in both lanthanum ferrite (LFO) nanoparticles, whereas a slight shifting of Raman scattering modes in LFOCo-Mo in contrast to LFOCo-So showed the octahedral distortion of the perovskite by changing the template. SEM micrographs indicated porous particles of lanthanum ferrite with LFOCo-So being more uniformly distributed, and EDX confirmed the stoichiometric ratios of the lanthanum, iron, and oxygen in the fabricated lanthanum ferrite. The high-intensity green emission in the photoluminescence spectrum of LFOCo-So indicated more prominent oxygen vacancies than LFOCo-Mo. The photocatalytic efficiency of synthesized LFOCo-So and LFOCo-Mo was investigated against cefadroxil drug under solar light irradiation. At optimized photocatalytic conditions, LFOCo-So showed higher degradation efficiency of 87% in only 20 min than LFOCo-Mo having photocatalytic activity of 81%. The excellent recyclability of the LFOCo-So reflected that it could be reused without affecting photocatalytic efficiency. These findings showed that sorbitol is a useful template for the lanthanum ferrite particles imparting outstanding features, enabling it to be used as an efficient photocatalyst for environmental remediation.

Keywords: Cefadroxil; Degradation mechanism; Environmental remediation; Kinetic; Lanthanum ferrite; Photocatalyst; Reusability.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources