Unraveling the Drivers of Tumorigenesis in the Context of Evolution: Theoretical Models and Bioinformatics Tools
- PMID: 37246992
- DOI: 10.1007/s00239-023-10117-0
Unraveling the Drivers of Tumorigenesis in the Context of Evolution: Theoretical Models and Bioinformatics Tools
Abstract
Cancer originates from somatic cells that have accumulated mutations. These mutations alter the phenotype of the cells, allowing them to escape homeostatic regulation that maintains normal cell numbers. The emergence of malignancies is an evolutionary process in which the random accumulation of somatic mutations and sequential selection of dominant clones cause cancer cells to proliferate. The development of technologies such as high-throughput sequencing has provided a powerful means to measure subclonal evolutionary dynamics across space and time. Here, we review the patterns that may be observed in cancer evolution and the methods available for quantifying the evolutionary dynamics of cancer. An improved understanding of the evolutionary trajectories of cancer will enable us to explore the molecular mechanism of tumorigenesis and to design tailored treatment strategies.
Keywords: Cancer evolution; Driver mutations; Evolutionary patterns; Genomics; Natural selection; Somatic mutations.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Similar articles
-
Measuring Clonal Evolution in Cancer with Genomics.Annu Rev Genomics Hum Genet. 2019 Aug 31;20:309-329. doi: 10.1146/annurev-genom-083117-021712. Epub 2019 May 5. Annu Rev Genomics Hum Genet. 2019. PMID: 31059289 Review.
-
Mutations, evolution and the central role of a self-defined fitness function in the initiation and progression of cancer.Biochim Biophys Acta Rev Cancer. 2017 Apr;1867(2):162-166. doi: 10.1016/j.bbcan.2017.03.005. Epub 2017 Mar 21. Biochim Biophys Acta Rev Cancer. 2017. PMID: 28341421 Free PMC article. Review.
-
Studying tumorigenesis through network evolution and somatic mutational perturbations in the cancer interactome.Mol Biol Evol. 2014 Aug;31(8):2156-69. doi: 10.1093/molbev/msu167. Epub 2014 May 31. Mol Biol Evol. 2014. PMID: 24881052 Free PMC article.
-
OncodriveFML: a general framework to identify coding and non-coding regions with cancer driver mutations.Genome Biol. 2016 Jun 16;17(1):128. doi: 10.1186/s13059-016-0994-0. Genome Biol. 2016. PMID: 27311963 Free PMC article.
-
Mutations, substitutions, and selection: Linking mutagenic processes to cancer using evolutionary theory.Biochim Biophys Acta Mol Basis Dis. 2024 Oct;1870(7):167268. doi: 10.1016/j.bbadis.2024.167268. Epub 2024 May 30. Biochim Biophys Acta Mol Basis Dis. 2024. PMID: 38823460 Review.
Cited by
-
MODIG: An Attention Mechanism-Based Approach to Cancer Driver Gene Identification.Methods Mol Biol. 2025;2932:247-257. doi: 10.1007/978-1-0716-4566-6_13. Methods Mol Biol. 2025. PMID: 40779114
References
-
- Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421. https://doi.org/10.1038/nature12477 - DOI - PubMed - PMC
-
- Althubaiti S, Karwath A, Dallol A et al (2019) Ontology-based prediction of cancer driver genes. Sci Rep 9:17405. https://doi.org/10.1038/s41598-019-53454-1 - DOI - PubMed - PMC
-
- Alves JM, Prado-López S, Cameselle-Teijeiro JM, Posada D (2019) Rapid evolution and biogeographic spread in a colorectal cancer. Nat Commun 10:5139. https://doi.org/10.1038/s41467-019-12926-8 - DOI - PubMed - PMC
-
- Anderson K, Lutz C, van Delft FW et al (2011) Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469:356–361. https://doi.org/10.1038/nature09650 - DOI - PubMed
-
- Armenia J, Wankowicz SAM, Liu D et al (2018) The long tail of oncogenic drivers in prostate cancer. Nat Genet 50:645–651. https://doi.org/10.1038/s41588-018-0078-z - DOI - PubMed - PMC
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical