minSNPs: an R package for the derivation of resolution-optimised SNP sets from microbial genomic data
- PMID: 37250706
- PMCID: PMC10224671
- DOI: 10.7717/peerj.15339
minSNPs: an R package for the derivation of resolution-optimised SNP sets from microbial genomic data
Abstract
Here, we present the R package, minSNPs. This is a re-development of a previously described Java application named Minimum SNPs. MinSNPs assembles resolution-optimised sets of single nucleotide polymorphisms (SNPs) from sequence alignments such as genome-wide orthologous SNP matrices. MinSNPs can derive sets of SNPs optimised for discriminating any user-defined combination of sequences from all others. Alternatively, SNP sets may be optimised to determine all sequences from all other sequences, i.e., to maximise diversity. MinSNPs encompasses functions that facilitate rapid and flexible SNP mining, and clear and comprehensive presentation of the results. The minSNPs' running time scales in a linear fashion with input data volume and the numbers of SNPs and SNPs sets specified in the output. MinSNPs was tested using a previously reported orthologous SNP matrix of Staphylococcus aureus and an orthologous SNP matrix of 3,279 genomes with 164,335 SNPs assembled from four S. aureus short read genomic data sets. MinSNPs was shown to be effective for deriving discriminatory SNP sets for potential surveillance targets and in identifying SNP sets optimised to discriminate isolates from different clonal complexes. MinSNPs was also tested with a large Plasmodium vivax orthologous SNP matrix. A set of five SNPs was derived that reliably indicated the country of origin within three south-east Asian countries. In summary, we report the capacity to assemble comprehensive SNP matrices that effectively capture microbial genomic diversity, and to rapidly and flexibly mine these entities for optimised marker sets.
Keywords: Genome; Genome alignments; Microbial; Plasmodium; Resolution optimised; SNP genotyping; SNP matrices; SNP mining; SNPs; Staphylococcus.
©2023 Hoon et al.
Conflict of interest statement
The authors declare there are no competing interests. Peter Shaw is employed by Oujian Laboratory.
Figures
References
-
- Adam I, Alam MS, Alemu S, Amaratunga C, Amato R, Andrianaranjaka V, Anstey NM, Aseffa A, Ashley E, Assefa A, Auburn S, Barber BE, Barry A, Pereira DB, Cao J, Chau NH, Chotivanich K, Chu C, Dondorp AM, Drury E, Echeverry DF, Erko B, Espino F, Fairhurst R, Faiz A, Villegas MAF, Gao Q, Golassa L, Goncalves S, Grigg MJ, Hamedi Y, Hien TT, Htut Y, Johnson KJ, Karunaweera N, Khan W, Krudsood S, Kwiatkowski DP, Lacerda M, Ley B, Lim P, Liu Y, Llanos-Cuentas A, Lon C, Lopera-Mesa T, Marfurt J, Michon P, Miotto O, Mohammed R, Mueller I, Namaik-larp C, Newton PN, Nguyen T-N, Nosten F, Noviyanti R, Pava Z, Pearson RD, Petros B, Phyo AP, Price RN, Pukrittayakamee S, Rahim AG, Randrianarivelojosia M, Rayner JC, Rumaseb A, Siegel SV, Simpson VJ, Thriemer K, Tobon-Castano A, Trimarsanto H, Ferreira MU, Vélez ID, Wangchuk S, Wellems TE, White NJ, William T, Yasnot MF, Yilma D. An open dataset of Plasmodium vivax genome variation in 1,895 worldwide samples. Wellcome Open Research. 2022;7:136. doi: 10.12688/wellcomeopenres.17795.1. - DOI - PMC - PubMed
-
- Auburn S, Benavente ED, Miotto O, Pearson RD, Amato R, Grigg MJ, Barber BE, William T, Handayuni I, Marfurt J, Trimarsanto H, Noviyanti R, Sriprawat K, Nosten F, Campino S, Clark TG, Anstey NM, Kwiatkowski DP, Price RN. Genomic analysis of a pre-elimination Malaysian Plasmodium vivax population reveals selective pressures and changing transmission dynamics. Nature Communications. 2018;9:2585. doi: 10.1038/s41467-018-04965-4. - DOI - PMC - PubMed
-
- Coll F, Raven KE, Knight GM, Blane B, Harrison EM, Leek D, Enoch DA, Brown NM, Parkhill J, Peacock SJ. Definition of a genetic relatedness cutoff to exclude recent transmission of meticillin-resistant Staphylococcus aureus: a genomic epidemiology analysis. The Lancet Microbe. 2020;1:e328–e335. - PMC - PubMed
-
- Diez Benavente E, Campos M, Phelan J, Nolder D, Dombrowski JG, Marinho CRF, Sriprawat K, Taylor AR, Watson J, Roper C, Nosten F, Sutherland CJ, Campino S, Clark TG. A molecular barcode to inform the geographical origin and transmission dynamics of Plasmodium vivax malaria. PLOS Genetics. 2020;16:e1008576. doi: 10.1371/journal.pgen.1008576. - DOI - PMC - PubMed
Publication types
MeSH terms
Associated data
LinkOut - more resources
Full Text Sources
