Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 May 11;8(20):17337-17349.
doi: 10.1021/acsomega.3c00188. eCollection 2023 May 23.

Advances in All-Inorganic Perovskite Nanocrystal-Based White Light Emitting Devices

Affiliations
Review

Advances in All-Inorganic Perovskite Nanocrystal-Based White Light Emitting Devices

Tajamul A Wani et al. ACS Omega. .

Abstract

Metal halide perovskites (MHPs) are exceptional semiconductors best known for their intriguing properties, such as high absorption coefficients, tunable bandgaps, excellent charge transport, and high luminescence yields. Among various MHPs, all-inorganic perovskites exhibit benefits over hybrid compositions. Notably, critical properties, including chemical and structural stability, could be improved by employing organic-cation-free MHPs in optoelectronic devices such as solar cells and light-emitting devices (LEDs). Due to their enticing features, including spectral tunability over the entire visible spectrum with high color purity, all-inorganic perovskites have become a focus of intense research for LEDs. This Review explores and discusses the application of all-inorganic CsPbX3 nanocrystals (NCs) in developing blue and white LEDs. We discuss the challenges perovskite-based LEDs (PLEDs) face and the potential strategies adopted to establish state-of-the-art synthetic routes to obtain rational control over dimensions and shape symmetry without compromising the optoelectronic properties. Finally, we emphasize the significance of matching the driving currents of different LED chips and balancing the aging and temperature of individual chips to realize efficient, uniform, and stable white electroluminescence.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
(a) Perovskite NC entities in the stock solution (left) and the 3D arrangement of perovskite structures (right). Pink balls represent the monovalent cation Cs+, orange balls indicate the face-centered halide ions X, and blue balls at the center of octahedra are divalent Pb2+ cations. (b) STEM image of monodisperse CsPbBr3 QDs. Adapted with permission from ref (6c). Copyright 2022 Science. (c) TEM image of anisotropic CsPbBr3 nanoplatelets. Adapted from ref (8a). Copyright 2020 American Chemical Society. (d) HRTEM image of flat flying 2D NRs. Adapted with permission from ref (8b). Copyright 2022 American Chemical Society. (e) Schematic illustration of OLPA-based CsPbBr3 nanocrystals passivated by hydrogen phosphonates, phosphonic acid anhydrides, and phosphonate species. Adapted with permission from ref (9d). Copyright 2020 American Chemical Society. (f) Perovskite deposition on ETL and HTL deposition on top of the perovskite layer. (g) Device operation of a fully fabricated LED upon applying bias. (h) Electron–hole recombination process inside the perovskite layer.
Figure 2
Figure 2
(a) Device structure of a typical perovskite LED. (b) Energy level diagram of a perovskite LED. (c) Schematic illustration of potassium passivation in CsPb(Br/Cl)3 NCs. Adapted with permission from ref (12a). Copyright 2020 Wiley. (d) Curve of the luminance as a function of the driving voltage. (e) Curve of the external quantum efficiency of the device as a function of current density for Ni2+ ion-doped CsPbClxBr3–x quantum dots. d, e Adapted with permission from ref (12b). Copyright 2020 American Chemical Society.
Figure 3
Figure 3
(a) Variation of the PL lifetime of untreated and CdCl2-treated CsPbCl3 nanocrystals with the temperature (268–328 K). Adapted with permission from ref (12c). Copyright 2019 American Chemical Society. (b) Schematic of the bipolar shell resurfacing of perovskite QDs comprised of an inner anion shell and an outer shell made up of cations and solvent molecules (top). EQE of exchanged blue LEDs with the variation in the current density based on CsPbBr3 QDs (bottom). Adapted with permission from ref (14b). Copyright 2020 Springer Nature. (c) EQE–J curves of the LED devices based on quantum-confined CsPbBr3 nanoplatelet-based 4.5 and 7 nm thick emitter layers. The inset shows the CIE color coordinate and photograph of a LED device (based on a 4.5 nm thick emitter layer) with an emitting size of 4 mm2 at an applied current density of 52 mA cm–2. Adapted with permission from ref (16a). Copyright 2022 American Chemical Society. (d) Evolution of the EQE with the driving current density for CsPbBr3 QDs. Adapted with permission from ref (18a). Copyright 2022 Springer Nature.
Figure 4
Figure 4
(a) Schematic energy band structure of a CsPbBrxCl3–x nanocrystal-based blue LED, (b) EL spectra, and (c) CIE coordinates with different weight ratios for the CsPbBrxCl3–x nanocrystal and MEH:PPV blend-based white LED (the inset shows the white LED photo). Adapted with permission from ref (18c). Copyright 2017 Wiley. (d) Schematic diagram of a white LED based on CsPbBr3 and CSAN:Eu2 composite films stacked on a blue LED. (e) Evolution of CIE coordinates of a WLED under various operation currents. (f) Color coordinates of a WLED operated at 20 mA after 30 min. The inset depicts the fully operated WLED. Adapted with permission from ref (19a). Copyright 2018 Elsevier.
Figure 5
Figure 5
(a) PL stability in air and (b) water resistance of pristine CsPbBr3 NCs and PMAO-coated CsPbBr3 NCs. The inset in (a) shows the photograph of a working LED. Adapted with permission from ref (19c). Copyright 2019 American Chemical Society. (c) EL spectra under continuous work of the white LED based on a GaN-based blue chip, green-emitting CsPbBr3 QDs/PDMS, and a red-emitting CsPbBrI2 QDs/PDMS layer operated continuously for 8 h (inset shows a digital photograph of the working white LED). Adapted with permission from ref (21). Copyright 2019 Springer. (d) Corresponding color coordinates of the WLED at different driving currents. The inset shows the working image of the WLED at 5 mA. Adapted with permission from ref (23a). Copyright 2021 Elsevier.

References

    1. Shamsi J.; Urban A. S.; Imran M.; De Trizio L.; Manna L. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119, 3296–3348. 10.1021/acs.chemrev.8b00644. - DOI - PMC - PubMed
    2. Arora N.; Greco A.; Meloni S.; Hinderhofer A.; Mattoni A.; Rothlisberger U.; Hagenlocher J.; Caddeo C.; Zakeeruddin S. M.; Schreiber F.; et al. Kinetics and energetics of metal halide perovskite conversion reactions at the nanoscale. Commun. Mater. 2022, 3, 22.10.1038/s43246-022-00239-1. - DOI
    3. Mazumdar S.; Zhao Y.; Zhang X. Stability of perovskite solar cells: degradation mechanisms and remedies. Front. Electron. 2021, 2, 712785.10.3389/felec.2021.712785. - DOI
    4. Akin S.; Bauer M.; Hertel D.; Meerholz K.; Zakeeruddin S. M.; Graetzel M.; Bäuerle P.; Dar M. I. Robust nonspiro-based hole conductors for high-efficiency perovskite solar cells. Adv. Funct. Mater. 2022, 32 (45), 2205729.10.1002/adfm.202205729. - DOI
    5. Xiang W.; Liu S.; Tress W. A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells. Energy Environ. Sci. 2021, 14, 2090–2113. 10.1039/D1EE00157D. - DOI
    6. Boziki A.; Dar M. I.; Jacopin G.; Grätzel M.; Rothlisberger U. Molecular origin of the asymmetric photoluminescence spectra of CsPbBr3 at low temperature. J. Phys. Chem. Lett. 2021, 12, 2699–2704. 10.1021/acs.jpclett.1c00263. - DOI - PubMed
    7. Uchida R.; Binet S.; Arora N.; Jacopin G.; Alotaibi M. H.; Taubert A.; Zakeeruddin S. M.; Dar M. I.; Graetzel M. Insights about the absence of Rb cation from the 3D perovskite lattice: effect on the structural, morphological, and photophysical properties and photovoltaic performance. Small 2018, 14, 1802033.10.1002/smll.201802033. - DOI - PubMed
    8. Wang Y.; Dar M. I.; Ono L. K.; Zhang T.; Kan M.; Li Y.; Zhang L.; Wang X.; Yang Y.; Gao X.; et al. Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies > 18%. Science 2019, 365 (6453), 591–595. 10.1126/science.aav8680. - DOI - PubMed
    9. Abdi-Jalebi M.; Ibrahim Dar M.; Senanayak S. P.; Sadhanala A.; Andaji-Garmaroudi Z.; Pazos-Outón L. M.; Richter J. M.; Pearson A. J.; Sirringhaus H.; Grätzel M. Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices. Sci. Adv. 2019, 5, eaav201210.1126/sciadv.aav2012. - DOI - PMC - PubMed
    10. Di Girolamo D.; Dar M. I.; Dini D.; Gontrani L.; Caminiti R.; Mattoni A.; Graetzel M.; Meloni S. Dual effect of humidity on cesium lead bromide: enhancement and degradation of perovskite films. J. Mater. Chem. A 2019, 7, 12292–12302. 10.1039/C9TA00715F. - DOI
    1. Tan Z.-K.; Moghaddam R. S.; Lai M. L.; Docampo P.; Higler R.; Deschler F.; Price M.; Sadhanala A.; Pazos L. M.; Credgington D.; et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9 (9), 687–692. 10.1038/nnano.2014.149. - DOI - PubMed
    2. Protesescu L.; Yakunin S.; Bodnarchuk M. I.; Krieg F.; Caputo R.; Hendon C. H.; Yang R. X.; Walsh A.; Kovalenko M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696. 10.1021/nl5048779. - DOI - PMC - PubMed
    3. Zhang F.; Zhong H.; Chen C.; Wu X.-g.; Hu X.; Huang H.; Han J.; Zou B.; Dong Y. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, CL) quantum dots: potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542. 10.1021/acsnano.5b01154. - DOI - PubMed
    4. Bai Z.; Zhong H. Halide perovskite quantum dots: potential candidates for display technology. Sci. Bull. 2015, 60, 1622–1624. 10.1007/s11434-015-0884-y. - DOI
    5. Gonzalez-Carrero S.; Galian R. E.; Pérez-Prieto J. Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles. J. Mater. Chem. A 2015, 3, 9187–9193. 10.1039/C4TA05878J. - DOI
    6. Schmidt L. C.; Pertegás A.; González-Carrero S.; Malinkiewicz O.; Agouram S.; Mínguez Espallargas G.; Bolink H. J.; Galian R. E.; Pérez-Prieto J. Nontemplate Synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853. 10.1021/ja4109209. - DOI - PubMed
    7. Swarnkar A.; Chulliyil R.; Ravi V. K.; Irfanullah M.; Chowdhury A.; Nag A. colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots. Angew. Chem., Int. Ed. 2015, 54, 15424–15428. 10.1002/anie.201508276. - DOI - PubMed
    8. Song J.; Li J.; Li X.; Xu L.; Dong Y.; Zeng H. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167. 10.1002/adma.201502567. - DOI - PubMed
    9. Li X.; Wu Y.; Zhang S.; Cai B.; Gu Y.; Song J.; Zeng H. CsPbX3 Quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445. 10.1002/adfm.201600109. - DOI
    1. Stranks S. D.; Eperon G. E.; Grancini G.; Menelaou C.; Alcocer M. J. P.; Leijtens T.; Herz L. M.; Petrozza A.; Snaith H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344. 10.1126/science.1243982. - DOI - PubMed
    2. Xing G.; Mathews N.; Sun S.; Lim S. S.; Lam Y. M.; Grätzel M.; Mhaisalkar S.; Sum T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347. 10.1126/science.1243167. - DOI - PubMed
    3. Yettapu G. R.; Talukdar D.; Sarkar S.; Swarnkar A.; Nag A.; Ghosh P.; Mandal P. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett. 2016, 16, 4838–4848. 10.1021/acs.nanolett.6b01168. - DOI - PubMed
    1. Xiao Z.; Kerner R. A.; Tran N.; Zhao L.; Scholes G. D.; Rand B. P. Engineering perovskite nanocrystal surface termination for light-emitting diodes with external quantum efficiency exceeding 15%. Adv. Funct. Mater. 2019, 29 (11), 1807284.10.1002/adfm.201807284. - DOI
    2. Fang Z.; Chen W.; Shi Y.; Zhao J.; Chu S.; Zhang J.; Xiao Z. Dual passivation of perovskite defects for light-emitting diodes with external quantum efficiency exceeding 20%. Adv. Funct. Mater. 2020, 30, 1909754.10.1002/adfm.201909754. - DOI
    3. Chu Z.; Ye Q.; Zhao Y.; Ma F.; Yin Z.; Zhang X.; You J. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation. Adv. Mater. 2021, 33, 2007169.10.1002/adma.202007169. - DOI - PubMed
    4. Akin S.; Arora N.; Zakeeruddin S. M.; Grätzel M.; Friend R. H.; Dar M. I. New Strategies for Defect Passivation in High-Efficiency Perovskite Solar Cells. Adv. Energy Mater. 2020, 10, 1903090.10.1002/aenm.201903090. - DOI
    1. Wang Y. K.; Yuan F.; Dong Y.; Li J. Y.; Johnston A.; Chen B.; Saidaminov M. I.; Zhou C.; Zheng X.; Hou Y.; Bertens K.; Ebe H.; Ma D. X.; Deng Z.; Yuan S.; Chen R.; Sagar L. K.; Liu J.; Fan J.; Li P.; Li X.; Gao Y.; Fung M.-K.; Lu Z.-H.; Bakr O. M.; Liao L.-S.; Sargent E. H. All-Inorganic quantum-dot LEDs based on a phase stabilized α-CsPbI3 perovskite. Angew. Chem., Int. Ed. 2021, 60, 16164–16170. 10.1002/anie.202104812. - DOI - PubMed
    2. Liu Z.; Qiu W.; Peng X.; Sun G.; Liu X.; Liu D.; Li Z.; He F.; Shen C.; Gu Q.; et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 2021, 33, 2103268.10.1002/adma.202103268. - DOI - PubMed
    3. Dey A.; Ye J.; De A.; Debroye E.; Ha S. K.; Bladt E.; Kshirsagar A. S.; Wang Z.; Yin J.; Wang Y.; et al. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano 2021, 15 (7), 10775–10981. 10.1021/acsnano.0c08903. - DOI - PMC - PubMed
    4. Chouhan L.; Ghimire S.; Subrahmanyam C.; Miyasaka T.; Biju V. Synthesis, optoelectronic properties and applications of halide perovskites. Chem. Soc. Rev. 2020, 49, 2869.10.1039/C9CS00848A. - DOI - PubMed
    5. Li X.; Wu Y.; Zhang S.; Cai B.; Gu Y.; Song J.; Zeng H. CsPbX3 Quantum Dots for Lighting and Displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445. 10.1002/adfm.201600109. - DOI
    6. Protesescu L.; Yakunin S.; Bodnarchuk M. I.; Krieg F.; Caputo R.; Hendon C. H.; Yang R. X.; Walsh A.; Kovalenko M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696. 10.1021/nl5048779. - DOI - PMC - PubMed
    7. Pan Q.; Hu H.; Zou Y.; Chen M.; Wu L.; Yang D.; Yuan X.; Fan J.; Sun B.; Zhang Q. Microwave-assisted synthesis of high-quality “all-inorganic” CsPbX3 (X = Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes. J. Mater. Chem. C 2017, 5, 10947–10954. 10.1039/C7TC03774K. - DOI
    8. Chen M.; Zou Y.; Wu L.; Pan Q.; Yang D.; Hu H.; Tan Y.; Zhong Q.; Xu Y.; Liu H.; et al. Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire. Adv. Funct. Mater. 2017, 27, 1701121.10.1002/adfm.201701121. - DOI
    9. Tong Y.; Bladt E.; Aygüler M. F.; Manzi A.; Milowska K. Z.; Hintermayr V. A.; Docampo P.; Bals S.; Urban A. S.; Polavarapu L.; et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem., Int. Ed. 2016, 55, 13887–13892. 10.1002/anie.201605909. - DOI - PubMed
    10. Zhu Z.-Y.; Yang Q.-Q.; Gao L.-F.; Zhang L.; Shi A.-Y.; Sun C.-L.; Wang Q.; Zhang H.-L. Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots. Phys. Chem. Lett. 2017, 8, 1610–1614. 10.1021/acs.jpclett.7b00431. - DOI - PubMed