Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jun 29;127(25):5718-5729.
doi: 10.1021/acs.jpcb.3c02115. Epub 2023 May 30.

Coarse-Grained Model of Phytic Acid for Predicting the Supramolecular Architecture of Ionically Cross-Linked Chitosan Hydrogels

Affiliations

Coarse-Grained Model of Phytic Acid for Predicting the Supramolecular Architecture of Ionically Cross-Linked Chitosan Hydrogels

Raluca M Visan et al. J Phys Chem B. .

Abstract

Phytic acid is a polyphosphate whose ionized form is used as a cross-linking agent to formulate chitosan-based nanoparticles and hydrogels as carriers with remarkable adhesivity and biocompatibility. To predict the underlying cross-linking pattern responsible for the structural arrangement in the chitosan hydrogels, we put forth coarse-grained parametrization of the phytic acid compatible with the Martini 2.3P force field. The bonded parameters giving the distinctive representation of the phosphate substitutes to the myo-inositol ring of phytic acid are optimized by a structural comparison to the conformation sampled with the GROMOS 56ACARBO force field. The chitosan strand is coarse-grained following a similar approach, and the cross-interaction terms are optimized to reproduce the atomistic features of phytate-mediated cross-linking. The predicted binding motifs of the phytic acid-chitosan complexation enable us to rationalize the structural characteristics of the reticulated chitosan in a semi-dilute solution. The model describes a network topology affected by the phytic acid concentration and a nonmonotonous behavior of the mean pore size caused by a poor predilection for the parallel strand alignment near the charge neutralization of the phytic acid-chitosan complex.

PubMed Disclaimer

LinkOut - more resources