Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jun;618(7967):951-958.
doi: 10.1038/s41586-023-06076-7. Epub 2023 May 31.

Indefinite and bidirectional near-infrared nanocrystal photoswitching

Affiliations

Indefinite and bidirectional near-infrared nanocrystal photoswitching

Changhwan Lee et al. Nature. 2023 Jun.

Abstract

Materials whose luminescence can be switched by optical stimulation drive technologies ranging from superresolution imaging1-4, nanophotonics5, and optical data storage6,7, to targeted pharmacology, optogenetics, and chemical reactivity8. These photoswitchable probes, including organic fluorophores and proteins, can be prone to photodegradation and often operate in the ultraviolet or visible spectral regions. Colloidal inorganic nanoparticles6,9 can offer improved stability, but the ability to switch emission bidirectionally, particularly with near-infrared (NIR) light, has not, to our knowledge, been reported in such systems. Here, we present two-way, NIR photoswitching of avalanching nanoparticles (ANPs), showing full optical control of upconverted emission using phototriggers in the NIR-I and NIR-II spectral regions useful for subsurface imaging. Employing single-step photodarkening10-13 and photobrightening12,14-16, we demonstrate indefinite photoswitching of individual nanoparticles (more than 1,000 cycles over 7 h) in ambient or aqueous conditions without measurable photodegradation. Critical steps of the photoswitching mechanism are elucidated by modelling and by measuring the photon avalanche properties of single ANPs in both bright and dark states. Unlimited, reversible photoswitching of ANPs enables indefinitely rewritable two-dimensional and three-dimensional multilevel optical patterning of ANPs, as well as optical nanoscopy with sub-Å localization superresolution that allows us to distinguish individual ANPs within tightly packed clusters.

PubMed Disclaimer

References

    1. Moerner, W. E. Single‐molecule spectroscopy, imaging, and photocontrol: foundations for super‐resolution microscopy (Nobel lecture). Angew. Chem. Int. Edn 54, 8067–8093 (2015).
    1. Keller, J., Schönle, A. & Hell, S. W. Efficient fluorescence inhibition patterns for RESOLFT microscopy. Opt. Express 15, 3361–3371 (2007). - PubMed - DOI
    1. Heilemann, M. et al. Subdiffraction‐resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Edn 47, 6172–6176 (2008).
    1. Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 8, 1027 (2011). - PubMed - PMC - DOI
    1. Hou, L. et al. Optically switchable organic light-emitting transistors. Nat. Nanotechnol. 14, 347–353 (2019). - PubMed - DOI

LinkOut - more resources