Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023:2673:371-399.
doi: 10.1007/978-1-0716-3239-0_26.

In Silico Structure-Based Vaccine Design

Affiliations
Review

In Silico Structure-Based Vaccine Design

Sakshi Piplani et al. Methods Mol Biol. 2023.

Abstract

Structure-based vaccine design (SBVD) is an important technique in computational vaccine design that uses structural information on a targeted protein to design novel vaccine candidates. This increasing ability to rapidly model structural information on proteins and antibodies has provided the scientific community with many new vaccine targets and novel opportunities for future vaccine discovery. This chapter provides a comprehensive overview of the status of in silico SBVD and discusses the current challenges and limitations. Key strategies in the field of SBVD are exemplified by a case study on design of COVID-19 vaccines targeting SARS-CoV-2 spike protein.

Keywords: COVID-19; Computer-aided vaccine design; De novo design; Focused library design; High-throughput virtual screening; Molecular docking; Protein modeling; SARS-CoV-2; Structure-based vaccine design; Target selection.

PubMed Disclaimer

References

    1. Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T, Green DVS, Hertzberg RP, Janzen WP, Paslay JW, Schopfer U, Sittampalam GS (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10(3):188–195. https://doi.org/10.1038/nrd3368 - DOI - PubMed
    1. Crank MC, Ruckwardt TJ, Chen M, Morabito KM, Phung E, Costner PJ, Holman LA, Hickman SP, Berkowitz NM, Gordon IJ, Yamshchikov GV, Gaudinski MR, Kumar A, Chang LA, Moin SM, Hill JP, DiPiazza AT, Schwartz RM, Kueltzo L, Cooper JW, Chen P, Stein JA, Carlton K, Gall JG, Nason MC, Kwong PD, Chen GL, Mascola JR, McLellan JS, Ledgerwood JE, Graham BS, Team VRCS (2019) A proof of concept for structure-based vaccine design targeting RSV in humans. Science 365(6452):505–509. https://doi.org/10.1126/science.aav9033 - DOI - PubMed
    1. Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP, Cao JM (2020) SARS-CoV-2: structure, biology, and structure-based therapeutics development. Front Cell Infect Microbiol 10:587269. https://doi.org/10.3389/fcimb.2020.587269 - DOI - PubMed - PMC
    1. Piplani S, Singh PK, Winkler DA, Petrovsky N (2021) In silico comparison of SARS-CoV-2 spike protein-ACE2 binding affinities across species and implications for virus origin. Sci Rep 11(1):13063. https://doi.org/10.1038/s41598-021-92388-5 - DOI - PubMed - PMC
    1. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2 - DOI - PubMed - PMC

Substances

LinkOut - more resources