Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jun 14;145(23):12499-12508.
doi: 10.1021/jacs.2c13249. Epub 2023 Jun 1.

Singly Reduced Iridium Chromophores: Synthesis, Characterization, and Photochemistry

Affiliations

Singly Reduced Iridium Chromophores: Synthesis, Characterization, and Photochemistry

Yunjung Baek et al. J Am Chem Soc. .

Abstract

One-electron reduced photosensitizers have been invoked as crucial intermediates in photoredox catalysis, including multiphoton excitation and electrophotocatalytic processes. However, such reduced chromophores have been less investigated, limiting mechanistic studies of their associated electron transfer processes. Here, we report a total of 11 different examples of isolable singly reduced iridium chromophores. Chemical reduction of a cyclometalated iridium complex with potassium graphite affords a 19-electron species. Structural and spectroscopic characterizations reveal a ligand-centered reduction product. The reduced chromophore absorbs a wide range of light from ultraviolet to near-infrared and exhibits photoinduced bimolecular electron transfer reactivity. These studies shed light on elusive reduced iridium chromophores in both ground and excited states, providing opportunities to investigate a commonly invoked intermediate in photoredox catalysis.

PubMed Disclaimer