Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 May 30;13(23):15805-15809.
doi: 10.1039/d3ra02988c. eCollection 2023 May 22.

Stille vs. Suzuki - cross-coupling for the functionalization of diazocines

Affiliations

Stille vs. Suzuki - cross-coupling for the functionalization of diazocines

Melanie Walther et al. RSC Adv. .

Abstract

Diazocines are azobenzene derived macrocyclic photoswitches with well resolved photostationary states for the (E)- and (Z)-isomers, which improves their addressability by light. In this work, effective procedures for the stannylation and borylation of diazocines in different positions are reported. Their use in Stille cross-coupling and Suzuki cross-coupling reactions with organic bromides is demonstrated in yields of 47-94% (Stille cross-coupling) and 0-95% (Suzuki cross-coupling), respectively.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Cross-coupling reaction of diazocines.
Scheme 2
Scheme 2. Synthesis of stannylated 3–4 and borylated diazocines 5–6.
Scheme 3
Scheme 3. Scope of Stille and Suzuki cross-coupling reactions for para-substituted diazocines 3 and 5.
Scheme 4
Scheme 4. Side reactions of Suzuki cross-coupling.
Scheme 5
Scheme 5. Scope of Stille and Suzuki cross-coupling reactions for meta-substituted diazocines 4 and 6.

References

    1. Siewertsen R. Neumann H. Buchheim-Stehn B. Herges R. Näther C. Renth F. Temps F. J. Am. Chem. Soc. 2009;131:15594–15595. - PubMed
    2. Deo C. Bogliotti N. Métivier R. Retailleau P. Xie J. Chem.–Eur. J. 2016;22:9092–9096. - PubMed
    3. Hammerich M. Schutt C. Stahler C. Lentes P. Rohricht F. Hoppner R. Herges R. J. Am. Chem. Soc. 2016;138:13111–13114. - PubMed
    1. Burk M. H. Schröder S. Moormann W. Langbehn D. Strunskus T. Rehders S. Herges R. Faupel F. Macromolecules. 2020;53:1164–1170.
    2. Burk M. H. Langbehn D. Hernández Rodríguez G. Reichstein W. Drewes J. Schröder S. Rehders S. Strunskus T. Herges R. Faupel F. ACS Appl. Polym. Mater. 2021;3:1445–1456.
    3. Li S. Colaco R. Staubitz A. ACS Appl. Polym. Mater. 2022;4:6825–6833.
    1. Li S. Han G. Zhang W. Macromolecules. 2018;51:4290–4297.
    1. Cabré G. Garrido-Charles A. González-Lafont À. Moormann W. Langbehn D. Egea D. Lluch J. M. Herges R. Alibés R. Busqué F. Gorostiza P. Hernando J. Org. Lett. 2019;21:3780–3784. - PubMed
    2. Ewert J. Heintze L. Jorda-Redondo M. von Glasenapp J. S. Nonell S. Bucher G. Peifer C. Herges R. J. Am. Chem. Soc. 2022;144:15059–15071. - PubMed
    3. Reynders M. Matsuura B. S. Bérouti M. Simoneschi D. Marzio A. Pagano M. Trauner D. Sci. Adv. 2020;6:eaay5064. - PMC - PubMed
    4. Samanta S. Qin C. Lough A. J. Woolley G. A. Angew. Chem., Int. Ed. 2012;51:6452–6455. - PubMed
    1. Li S. Bamberg K. Lu Y. Sönnichsen F. D. Staubitz A. Polymers. 2023;15:1306. - PMC - PubMed