Sex differences in resting-state functional networks in awake rats
- PMID: 37261489
- DOI: 10.1007/s00429-023-02657-4
Sex differences in resting-state functional networks in awake rats
Abstract
Sex-related differences can be found in many brain disorders and psychophysiological traits, highlighting the importance to systematically understand the sex differences in brain function in humans and animal models. Despite emerging effort to address sex differences in behaviors and disease models in rodents, how brain-wide functional connectivity (FC) patterns differ between male and female rats remains largely unknown. Here, we used resting-state functional magnetic resonance imaging (rsfMRI) to investigate regional and systems-level differences between female and male rats. Our data show that female rats display stronger hypothalamus connectivity, whereas male rats exhibit more prominent striatum-related connectivity. At the global scale, female rats demonstrate stronger segregation within the cortical and subcortical systems, while male rats display more prominent cortico-subcortical interactions, particularly between the cortex and striatum. Taken together, these data provide a comprehensive framework of sex differences in resting-state connectivity patterns in the awake rat brain, and offer a reference for studies aiming to reveal sex-related FC differences in different animal models of brain disorders.
Keywords: Awake; Rat; Resting state; Sex differences; fMRI.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Update of
-
Sex differences in resting-state functional networks in awake rats.Res Sq [Preprint]. 2023 Mar 16:rs.3.rs-2684325. doi: 10.21203/rs.3.rs-2684325/v1. Res Sq. 2023. Update in: Brain Struct Funct. 2023 Jul;228(6):1411-1423. doi: 10.1007/s00429-023-02657-4. PMID: 36993730 Free PMC article. Updated. Preprint.
Similar articles
-
Sex differences in resting-state functional networks in awake rats.Res Sq [Preprint]. 2023 Mar 16:rs.3.rs-2684325. doi: 10.21203/rs.3.rs-2684325/v1. Res Sq. 2023. Update in: Brain Struct Funct. 2023 Jul;228(6):1411-1423. doi: 10.1007/s00429-023-02657-4. PMID: 36993730 Free PMC article. Updated. Preprint.
-
Sex differences and age-related changes of large-scale brain networks.BMC Med Imaging. 2025 Jul 6;25(1):271. doi: 10.1186/s12880-025-01811-0. BMC Med Imaging. 2025. PMID: 40619358 Free PMC article.
-
Resting-state functional connectivity in anxiety disorders: a multicenter fMRI study.Mol Psychiatry. 2025 Apr;30(4):1548-1557. doi: 10.1038/s41380-024-02768-2. Epub 2024 Oct 4. Mol Psychiatry. 2025. PMID: 39367057 Free PMC article.
-
A systematic review of resting-state functional connectivity in obesity: Refining current neurobiological frameworks and methodological considerations moving forward.Rev Endocr Metab Disord. 2022 Aug;23(4):861-879. doi: 10.1007/s11154-021-09665-x. Epub 2021 Jun 23. Rev Endocr Metab Disord. 2022. PMID: 34159504
-
Altered brain connectivity in hyperkinetic movement disorders: A review of resting-state fMRI.Neuroimage Clin. 2023;37:103302. doi: 10.1016/j.nicl.2022.103302. Epub 2022 Dec 24. Neuroimage Clin. 2023. PMID: 36669351 Free PMC article.
Cited by
-
Short-term caloric restriction or resveratrol supplementation alters large-scale brain network connectivity in male and female rats.Front Nutr. 2025 Feb 3;12:1440373. doi: 10.3389/fnut.2025.1440373. eCollection 2025. Front Nutr. 2025. PMID: 39963669 Free PMC article.
-
Dogs' olfactory resting-state functional connectivity is modulated by age and brain shape.Sci Rep. 2025 Apr 15;15(1):11438. doi: 10.1038/s41598-025-95123-6. Sci Rep. 2025. PMID: 40234563 Free PMC article.
-
Contextual auditory processing in the inferior colliculus is affected in a sex- and age-dependent manner in the valproic acid-induced rat model of autism.PLoS Biol. 2025 Aug 4;23(8):e3003309. doi: 10.1371/journal.pbio.3003309. eCollection 2025 Aug. PLoS Biol. 2025. PMID: 40758713 Free PMC article.
References
-
- Ajayi AF, Akhigbe RE (2020) Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertil Res Pract. https://doi.org/10.1186/s40738-020-00074-3 - DOI - PubMed - PMC
-
- Anderson GD (2008) Chapter 1 Gender differences in pharmacological response. International review of neurobiology. Elsevier, Amsterdam, pp 1–10. https://doi.org/10.1016/s0074-7742(08)00001-9 - DOI
-
- Bangasser DA, Cuarenta A (2021) Sex differences in anxiety and depression: circuits and mechanisms. Nat Rev Neurosci 22(11):674–684. https://doi.org/10.1038/s41583-021-00513-0 - DOI - PubMed
-
- Bangasser DA, Wicks B (2017) Sex-specific mechanisms for responding to stress. J Neurosci Res 95(1–2):75–82. https://doi.org/10.1002/jnr.23812 - DOI - PubMed - PMC
-
- Barker JM, Torregrossa MM, Arnold AP, Taylor JR (2010) Dissociation of genetic and hormonal influences on sex differences in alcoholism-related behaviors. J Neurosci 30(27):9140–9144. https://doi.org/10.1523/jneurosci.0548-10.2010 - DOI - PubMed - PMC
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources