Copper-catalyzed [1,3]-nitrogen rearrangement of O- aryl ketoximes via oxidative addition of N-O bond in inverse electron flow
- PMID: 37265725
- PMCID: PMC10231427
- DOI: 10.1039/d3sc00874f
Copper-catalyzed [1,3]-nitrogen rearrangement of O- aryl ketoximes via oxidative addition of N-O bond in inverse electron flow
Abstract
The [1,3]-nitrogen rearrangement reactions of O-aryl ketoximes were promoted by N-heterocyclic carbene (NHC)-copper catalysts and BF3·OEt2 as an additive, affording ortho-aminophenol derivatives in good yields. The reaction of substrates with electron-withdrawing substituents on the phenol moiety are accelerated by adding silver salt and modifying the substituent at the nitrogen atom. Density functional theory calculations suggest that the rate-determining step of this reaction is the oxidative addition of the N-O bond of the substrate to the copper catalyst. The negative ρ values of the substituent at both the oxime carbon and phenoxy group indicate that the donation of electrons by the oxygen and nitrogen atoms accelerates the oxidative addition.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures






Similar articles
-
Cationic N-Heterocyclic Carbene Copper-Catalyzed [1,3]-Alkoxy Rearrangement of N-Alkoxyanilines.Org Lett. 2017 Jun 16;19(12):3059-3062. doi: 10.1021/acs.orglett.7b01110. Epub 2017 May 24. Org Lett. 2017. PMID: 28537740
-
Mechanism of Ni N-heterocyclic carbene catalyst for C-O bond hydrogenolysis of diphenyl ether: a density functional study.Dalton Trans. 2014 Dec 28;43(48):18123-33. doi: 10.1039/c4dt02374a. Dalton Trans. 2014. PMID: 25355042
-
Au-catalyzed skeletal rearrangement of O-propargylic oximes via N-O bond cleavage with the aid of a Brønsted base cocatalyst.Chem Sci. 2019 Apr 18;10(20):5283-5289. doi: 10.1039/c9sc00501c. eCollection 2019 May 28. Chem Sci. 2019. PMID: 31191884 Free PMC article.
-
NHC-catalyzed covalent activation of heteroatoms for enantioselective reactions.Chem Sci. 2021 Mar 2;12(14):5037-5043. doi: 10.1039/d1sc00469g. Chem Sci. 2021. PMID: 34163747 Free PMC article. Review.
-
Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process.Chem Soc Rev. 2012 May 7;41(9):3464-84. doi: 10.1039/c2cs15323h. Epub 2012 Feb 20. Chem Soc Rev. 2012. PMID: 22349590 Review.
Cited by
-
Synthesis of meta-Aminophenol Derivatives via Cu-Catalyzed [1,3]-Rearrangement-Oxa-Michael Addition Cascade Reactions.Molecules. 2023 May 22;28(10):4251. doi: 10.3390/molecules28104251. Molecules. 2023. PMID: 37241991 Free PMC article.
References
-
- Narasaka K. Kitamura M. Eur. J. Org. Chem. 2005:4505–4519. doi: 10.1002/ejoc.200500389. - DOI
- Patureau F. W. Glorius F. Angew. Chem., Int. Ed. 2011;50:1977–1979. doi: 10.1002/anie.201007241. - DOI - PubMed
- Huang H. Ji X. Wu W. Jiang H. Chem. Soc. Rev. 2015;44:1155–1171. doi: 10.1039/C4CS00288A. - DOI - PubMed
- Huang H. Cai J. Deng G.-J. Org. Biomol. Chem. 2016;14:1519–1530. doi: 10.1039/C5OB02417J. - DOI - PubMed
- Rykaczewski K. A. Wearing E. R. Blackmun D. E. Schindler C. S. Nat. Synth. 2022;1:24–36. doi: 10.1038/s44160-021-00007-y. - DOI
- Hirano K. Miura M. J. Am. Chem. Soc. 2022;144:648–661. doi: 10.1021/jacs.1c12663. - DOI - PubMed
-
- Yang H.-B. Pathipati S. R. Selander N. ACS Catal. 2017;7:8441–8445. doi: 10.1021/acscatal.7b03432. - DOI
- Yu X.-Y. Zhao Q.-Q. Chen J. Chen J.-R. Xiao W.-J. Angew. Chem., Int. Ed. 2018;57:15505–15509. doi: 10.1002/anie.201809820. - DOI - PubMed
- Nakahuku K. M. Zhang Z. Wappes E. A. Stateman L. M. Chen A. D. Nagib D. A. Nat. Chem. 2020;12:697–704. doi: 10.1038/s41557-020-0482-8. - DOI - PMC - PubMed
- Becker M. R. Wearing E. R. Schindler C. S. Nat. Chem. 2020;12:898–905. doi: 10.1038/s41557-020-0541-1. - DOI - PubMed
- Du F. Jiang S.-J. Zeng R. Pan X.-C. Lan Y. Chen Y.-C. Wei Y. Angew. Chem., Int. Ed. 2020;59:23755–23762. doi: 10.1002/anie.202010752. - DOI - PubMed
- Górski B. Barthelemy A.-L. Douglas J. J. Juliá F. Leonori D. Nat. Catal. 2021;4:54–61. doi: 10.1038/s41929-020-00553-2. - DOI
- Wei W.-X. Li Y. Wen Y.-T. Li M. Li X.-S. Wang C.-T. Liu H.-C. Xia Y. Zhang B.-S. Jiao R.-Q. Liang Y.-M. J. Am. Chem. Soc. 2021;143:7868–7875. doi: 10.1021/jacs.1c04114. - DOI - PubMed
- Wearing E. R. Blackmun D. E. Becker M. R. Schindler C. S. J. Am. Chem. Soc. 2021;143:16235–16242. doi: 10.1021/jacs.1c07523. - DOI - PubMed
- Fazekas T. J. Alty J. W. Neidhart E. K. Miller A. S. Leibfarth F. A. Alexanian E. J. Science. 2022;375:545–550. doi: 10.1126/science.abh4308. - DOI - PMC - PubMed
- Feng T. Liu C. Wu Z. Wu X. Zhu C. Chem. Sci. 2022;13:2669–2673. doi: 10.1039/D2SC00015F. - DOI - PMC - PubMed
-
- Hayashi H. Uchida T. Eur. J. Org. Chem. 2020:909–916. doi: 10.1002/ejoc.201901562. - DOI
-
, and references therein;
- Wang H. Jung H. Song F. Zhu S. Bai Z. Chen D. He G. Chang S. Chen G. Nat. Chem. 2021;13:378–385. doi: 10.1038/s41557-021-00650-0. - DOI - PubMed
- Lee E. Hwang Y. Kim Y. B. Kim D. Chang S. J. Am. Chem. Soc. 2021;143:6363–6369. doi: 10.1021/jacs.1c02550. - DOI - PubMed
- Du B. Ouyang Y. Chen Q. Yu W.-Y. J. Am. Chem. Soc. 2021;143:14962–14968. doi: 10.1021/jacs.1c05834. - DOI - PubMed
- Zhang Y. Qiao D. Duan M. Wang Y. Zhu S. Nat. Commun. 2022;13:5630. doi: 10.1038/s41467-022-33411-9. - DOI - PMC - PubMed
- Carlberg N. W. Rovis T. J. Am. Chem. Soc. 2022;144:22426–22432. doi: 10.1021/jacs.2c10552. - DOI - PMC - PubMed
- Li N. Zhao H. J. Gu Z. Angew. Chem., Int. Ed. 2023;62:e202215530. - PubMed
-
- Kikugawa Y. Heterocycles. 2009;78:571–607. doi: 10.3987/REV-08-644. - DOI
-
, and references therein;
- Nakamura I. Jo T. Tashiro H. Terada M. Org. Lett. 2017;19:3059–3062. doi: 10.1021/acs.orglett.7b01110. - DOI - PubMed
- Farndon J. J. Ma X. Bower J. F. J. Am. Chem. Soc. 2017;139:14005. doi: 10.1021/jacs.7b07830. - DOI - PMC - PubMed
- Ishida Y. Nakamura I. Terada M. J. Am. Chem. Soc. 2018;140:8629–8633. doi: 10.1021/jacs.8b03669. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous