Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug;91(4):514-535.
doi: 10.1007/s00239-023-10115-2. Epub 2023 Jun 3.

Sequence Divergence in Venom Genes Within and Between Montane Pitviper (Viperidae: Crotalinae: Cerrophidion) Species is Driven by Mutation-Drift Equilibrium

Affiliations

Sequence Divergence in Venom Genes Within and Between Montane Pitviper (Viperidae: Crotalinae: Cerrophidion) Species is Driven by Mutation-Drift Equilibrium

Ramses Alejandro Rosales-García et al. J Mol Evol. 2023 Aug.

Erratum in

Abstract

Snake venom can vary both among and within species. While some groups of New World pitvipers-such as rattlesnakes-have been well studied, very little is known about the venom of montane pitvipers (Cerrophidion) found across the Mesoamerican highlands. Compared to most well-studied rattlesnakes, which are widely distributed, the isolated montane populations of Cerrophidion may facilitate unique evolutionary trajectories and venom differentiation. Here, we describe the venom gland transcriptomes for populations of C. petlalcalensis, C. tzotzilorum, and C. godmani from Mexico, and a single individual of C. sasai from Costa Rica. We explore gene expression variation in Cerrophidion and sequence evolution of toxins within C. godmani specifically. Cerrophidion venom gland transcriptomes are composed primarily of snake venom metalloproteinases, phospholipase A[Formula: see text]s (PLA[Formula: see text]s), and snake venom serine proteases. Cerrophidion petlalcalensis shows little intraspecific variation; however, C. godmani and C. tzotzilorum differ significantly between geographically isolated populations. Interestingly, intraspecific variation was mostly attributed to expression variation as we did not detect signals of selection within C. godmani toxins. Additionally, we found PLA[Formula: see text]-like myotoxins in all species except C. petlalcalensis, and crotoxin-like PLA[Formula: see text]s in the southern population of C. godmani. Our results demonstrate significant intraspecific venom variation within C. godmani and C. tzotzilorum. The toxins of C. godmani show little evidence of directional selection where variation in toxin sequence is consistent with evolution under a model of mutation-drift equilibrium. Cerrophidion godmani individuals from the southern population may exhibit neurotoxic venom activity given the presence of crotoxin-like PLA[Formula: see text]s; however, further research is required to confirm this hypothesis.

El veneno de las serpientes puede variar entre y dentro de las especies. Mientras algunos grupos de viperidos del Nuevo Mundo—como las cascabeles—han sido bien estudiadas, muy poco se sabe acerca del veneno de las nauyacas de frío (Cerrophidion) que se encuentran en las zonas altas de Mesoamérica. Comparadas con las extensamente estudiadas cascabeles, que estan ampliamente distribuidas, las poblaciones de Cerrophidion, aisladas en montañas, pueden poseer trayectorias evolutivas y diferenciación en su veneno unicos. En el presente trabajo, describimos el transcriptoma de las glándulas de veneno de poblaciones de C. petlalcalensis, C. tzotzilorum, y C. godmani de México, y un individuo de C. sasai de Costa Rica. Exploramos la variación en la expresión de toxinas en Cerrophidion y la evolución en las secuencias geneticas en C. godmani específicamente. El transcriptoma de la glándula de veneno de Cerrophidion esta compuesto principalmente de Metaloproteinasas de Veneno de Serpiente, Fosfolipasas A a 2 (PLA a 2 s), y Serin Proteasas de Veneno de Serpiente. Cerrophidion petlalcalensis presenta poca variación intraespecífica; sin embargo, los transcriptomas de la glandula de veneno de C. godmani y C. tzotzilorum difieren significativamente entre poblaciones geográficamente aisladas. Curiosamente, la variación intraespecífica estuvo atribuida principalmente a la expresión de las toxinas ya que no encontramos señales de selección en las toxinas de C. godmani. Adicionalmente, encontramos miotoxinas similares a PLA a 2 en todas las especies excepto C. petlalcalensis, y PLA a 2 s similares a crotoxina en la población sureña de C. godmani. Nuestros resultados demuestran la presencia de variacion intraespecífica presente en el veneno de C. godmani y C. tzotzilorum. Las toxinas de Cerrophidion godmani muestran poca evidencia de selección direccional, y la variación en la secuencias de las toxinas es consistente con evolucion bajo un modelo de equilibrio de mutación-deriva. Algunos individuos de C. godmani de la población del sur potencialmente tienen un veneno neurotóxico dada la presencia de PLA a 2 s similares a la crotoxina, sin embargo, se necesita más evidencia para corroborar esta hipótesis.

Keywords: Gene family evolution; Mutation–drift equilibrium; Selection; Transcriptomics.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest The authors declare no conflict of interest.

Figures

Fig. 1
Fig. 1
Cerrophidion distribution in Mesoamerica. Map modified from VenomMaps (Rautsaw et al. 2022), with the localities of samples of each species used herein. Species are represented by different shapes, different outline colors correspond to Northern populations of that species.*Cerrophidion wilsoni was not included in this work. Species tree scaled with IQtree from the inferred Astral tree; support values correspond to the Astral species tree. Node shapes correspond with the populations in the map. Pie charts in the tips show the percentage of expression of the five most abundant toxin families; the remaining toxin families are included in the category “Other.” Photo Credit: Jason M. Jones (C. tzotzilorum)
Fig. 2
Fig. 2
RSEM results for the consensus transcriptomes of A C. sasai, B. C. petlalcalensis, and C. C. tzotzilorum. In A (I) barplot of the log ranked expression of toxin genes, (II) pie charts of the percent expression of each toxin family average of all individuals. In B and C, (I) barplot of the log ranked expression of toxin genes, (II) stacked barplots with the percent expression of each toxin family by sampled individual, (III) pie charts of the percent expression of each toxin family average of all individuals. Photo Credit: A R. Wayne VanDevender (C. sasai), B Carlos E. Montaño-Ruvalcaba (C. petlalcalensis), and C Ramses A. Rosales-García (C. tzotzilorum)
Fig. 3
Fig. 3
RSEM results for the A average transcriptome of all individual of C. godmani; B average of the northern population; and C average of the southern population. In A (I) barplot of the log ranked expression of toxin genes, (II) stacked barplots with the percent expression of each toxin family by sampled individual, (III) pie chart of the percent expression of each toxin family for individual populations and for all the individuals. In B and C, (I) barplot of the log ranked expression of toxin genes; (II) pie chart of the percent expression of each toxin family for individual populations and for all the individuals. Photo Credit: Carlos E. Montaño-Ruvalcaba (C. godmani)
Fig. 4
Fig. 4
A Consensus maximum likelihood tree of the PLA2s in Cerrophidion including PLA2s used in Whittington et al. (2018), Mason et al. (2020), Neri-Castro et al. (2020b), and from Genbank (accession numbers in online resource 1, Table S1). The Cerrophidion PLA2s (names highlighted in blue) are numbered by the toxin’s average expression for each species. Acidic and basic PLA2s are identified by red and blue branches, respectively, based on the hypothetical isoelectric point of the amino acid sequences. Nodes with a black dot have >75 bootstrap support. Cerrophidion crotoxin subunit homologs are identified by a star (*) next to the name. B Species tree scaled with IQtree from the inferred Astral tree; lineages with crotoxin-like subunit homologs are purple; support values correspond to the Astral species tree. C Amino acid alignment of the gA2 clade and the hypothetical homolog from Cerrophidion, dots represent no change from the reference sequence (C._godmani_11). Sites represented with bars match cleavage sites identified in Whittington et al. (2018); a black star (*) at site 5 is the key substitution known in Bothriechis, Crotalus, and Gloydius; a red star (*) is at the alternative cleavage site in C. godmani based on the protein cutter tool from ExPASy server (http://web.expasy.org/peptide_cutter/; Gasteiger et al. 2005) (Color figure online)
Fig. 5
Fig. 5
Heatmap showing the log TPM expression of toxins identified as differentially expressed in C. godmani ordered by the average expression. In the left columns (Pop & SVL) the darker colors represent significant differential expression agreement by both DESeq2 and edgeR (FDR< 0.05)
Fig. 6
Fig. 6
Selection plots. Top: estimates of selection using A Tajima’s D, B FST, and C Likelihood Ratio Test (LRT) for the BUSTED model for Toxins and Nontoxins, each with the Nontoxin 95th percentile (dotted lines) to identify outlier toxins. The toxin family and the rank based on highest-to-lowest average expression in the transcriptome is displayed for toxins which fall outside the 95th percentile. Bottom: Linear regressions of the Toxin’s mean expression (Average TPM) and estimates of selection including D Tajima’s D, E FST, and F LRT of the BUSTED model. For Tajima’s D, dotted lines are regressions considering all the transcripts (center), just positive values (top) and just negative values (bottom)

Similar articles

Cited by

References

    1. Aird SD, Aggarwal S, Villar-Briones A, Tin MMY, Terada K, Mikheyev AS (2015) Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly. BMC Genom 16:1–20. 10.1186/s12864-015-1832-6 - DOI - PMC - PubMed
    1. Aird SD, Arora J, Barua A, Qiu L, Terada K, Mikheyev AS (2017) Population genomic analysis of a pitviper reveals microevolutionary forces underlying venom chemistry. Genome Biol Evol 9:2640–2649 - PMC - PubMed
    1. Aird SD, Watanabe Y, Villar-briones A, Roy MC, Terada K, Mikheyev AS (2013) Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis). BMC Genom 14:1–26 - PMC - PubMed
    1. Almeida DD, Viala VL, Nachtigall PG, Broe M, Gibbs HL, Serrano SMdT, Moura-da Silva AM, Ho PL, Nishiyama-Jr MY, Junqueira-de Azevedo ILM (2021) Tracking the recruitment and evolution of snake toxins using the evolutionary context provided by the Bothrops jararaca genome. Proc Natl Acad Sci 118:e2015159118. 10.1073/pnas.2015159118 - DOI - PMC - PubMed
    1. Amazonas DR, Portes-Junior JA, Nishiyama-Jr MY, Nicolau CA, Chalkidis HM, Mourão RH, Grazziotin FG, Rokyta DR, Gibbs HL, Valente RH, Junqueira-de Azevedo IL, Moura-da Silva AM (2018) Molecular mechanisms underlying intraspecific variation in snake venom. J Proteom 181:60–72. 10.1016/j.jprot.2018.03.032 - DOI - PubMed

Publication types

LinkOut - more resources