Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jun 6;13(1):9161.
doi: 10.1038/s41598-023-35907-w.

Ebselen derivatives inhibit SARS-CoV-2 replication by inhibition of its essential proteins: PLpro and Mpro proteases, and nsp14 guanine N7-methyltransferase

Affiliations

Ebselen derivatives inhibit SARS-CoV-2 replication by inhibition of its essential proteins: PLpro and Mpro proteases, and nsp14 guanine N7-methyltransferase

Mikolaj Zmudzinski et al. Sci Rep. .

Abstract

Proteases encoded by SARS-CoV-2 constitute a promising target for new therapies against COVID-19. SARS-CoV-2 main protease (Mpro, 3CLpro) and papain-like protease (PLpro) are responsible for viral polyprotein cleavage-a process crucial for viral survival and replication. Recently it was shown that 2-phenylbenzisoselenazol-3(2H)-one (ebselen), an organoselenium anti-inflammatory small-molecule drug, is a potent, covalent inhibitor of both the proteases and its potency was evaluated in enzymatic and antiviral assays. In this study, we screened a collection of 34 ebselen and ebselen diselenide derivatives for SARS-CoV-2 PLpro and Mpro inhibitors. Our studies revealed that ebselen derivatives are potent inhibitors of both the proteases. We identified three PLpro and four Mpro inhibitors superior to ebselen. Independently, ebselen was shown to inhibit the N7-methyltransferase activity of SARS-CoV-2 nsp14 protein involved in viral RNA cap modification. Hence, selected compounds were also evaluated as nsp14 inhibitors. In the second part of our work, we employed 11 ebselen analogues-bis(2-carbamoylaryl)phenyl diselenides-in biological assays to evaluate their anti-SARS-CoV-2 activity in Vero E6 cells. We present their antiviral and cytoprotective activity and also low cytotoxicity. Our work shows that ebselen, its derivatives, and diselenide analogues constitute a promising platform for development of new antivirals targeting the SARS-CoV-2 virus.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Simplified life cycle of SARS-CoV-2. The virus enters a host’s cell and releases its genome in cytoplasm. Viral RNA is translated into two polyproteins: pp1a and pp1ab. Then, due to autocleavage, two viral proteases (PLpro and Mpro) are liberated. Their main role is to further process polyproteins, what results in a release of other nsps. Next, a group of nsps form replication and transcription complexes (RTCs). RTCs are further involved in a generation of copies of viral genomic RNA (g-RNA), as well as a set of sub-genomic RNAs (sg-RNA) responsible for synthesis of viral structural and accessory proteins. Virions are assembled in endoplasmic reticulum-Golgi intermediate compartments (ERGICs). g-RNA is coated with structural N-protein and enters the ERGIC containing M, E, and S glycoproteins. Then, the virions are released by exocytosis,. Inhibition of Mpro, PLpro, and N7-MTase may lead to suppression of virus replication. Protease inhibition stops the generation of nsps, while N7-MTase inhibition prevents the synthesis of stable transcripts of the viral RNA. Created with BioRender.com.
Figure 2
Figure 2
Plausible catalytic cycle of ebselen involving hydrogen peroxide reduction, including formation of the ebselen open form (dark blue color),.
Figure 3
Figure 3
Preparation of ebselen, its derivatives and their ‘dimeric’ form analogues 1–33. Reagents and conditions: (a) (i) aq. HCl, (ii) NaNO2, − 7 to + 7 °C, (b) (i) NaSeSeNa, MeOH, NaOH or LiSeSeLi, THF, HMPTA, − 7 to + 5 °C, (ii) aq. HCl, (c) 7 equiv SOCl2, cat. (DMF), benzene, reflux, (d) RNH2, Et3N, MeCN or DCM, (e) 3.5 equiv SOCl2, cat. (DMF), benzene, reflux, (f) RNH2, Na2CO3, DCM, (g) H2N-NH2∙H2O, MeOH, reflux. (Carried out in accordance with Refs.,–.

References

    1. Wang C, et al. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470–473. doi: 10.1016/S0140-6736(20)30185-9. - DOI - PMC - PubMed
    1. Wu F, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269. doi: 10.1038/s41586-020-2008-3. - DOI - PMC - PubMed
    1. Andersen KG, et al. The proximal origin of SARS-CoV-2. Nat. Med. 2020;26(4):450–452. doi: 10.1038/s41591-020-0820-9. - DOI - PMC - PubMed
    1. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020;20(5):533–534. doi: 10.1016/S1473-3099(20)30120-1. - DOI - PMC - PubMed
    1. Harvey WT, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021;19(7):409–424. doi: 10.1038/s41579-021-00573-0. - DOI - PMC - PubMed

Publication types