Personalization strategies in digital mental health interventions: a systematic review and conceptual framework for depressive symptoms
- PMID: 37283721
- PMCID: PMC10239832
- DOI: 10.3389/fdgth.2023.1170002
Personalization strategies in digital mental health interventions: a systematic review and conceptual framework for depressive symptoms
Abstract
Introduction: Personalization is a much-discussed approach to improve adherence and outcomes for Digital Mental Health interventions (DMHIs). Yet, major questions remain open, such as (1) what personalization is, (2) how prevalent it is in practice, and (3) what benefits it truly has.
Methods: We address this gap by performing a systematic literature review identifying all empirical studies on DMHIs targeting depressive symptoms in adults from 2015 to September 2022. The search in Pubmed, SCOPUS and Psycinfo led to the inclusion of 138 articles, describing 94 distinct DMHIs provided to an overall sample of approximately 24,300 individuals.
Results: Our investigation results in the conceptualization of personalization as purposefully designed variation between individuals in an intervention's therapeutic elements or its structure. We propose to further differentiate personalization by what is personalized (i.e., intervention content, content order, level of guidance or communication) and the underlying mechanism [i.e., user choice, provider choice, decision rules, and machine-learning (ML) based approaches]. Applying this concept, we identified personalization in 66% of the interventions for depressive symptoms, with personalized intervention content (32% of interventions) and communication with the user (30%) being particularly popular. Personalization via decision rules (48%) and user choice (36%) were the most used mechanisms, while the utilization of ML was rare (3%). Two-thirds of personalized interventions only tailored one dimension of the intervention.
Discussion: We conclude that future interventions could provide even more personalized experiences and especially benefit from using ML models. Finally, empirical evidence for personalization was scarce and inconclusive, making further evidence for the benefits of personalization highly needed.
Systematic review registration: Identifier: CRD42022357408.
Keywords: depression; digital mental health; personalization; precision care, iCBT, machine learning.
© 2023 Hornstein, Zantvoort, Lueken, Funk and Hilbert.
Conflict of interest statement
Two of the authors declare no Competing Non-Financial Interests but the following Competing Financial Interests. SH is currently employed as Data Scientist by Elona Health, a digital mental health start-up building blended mental healthcare solutions for the German market. SH worked for Meru Health, a digital mental health company developing interventions, in the past. BF is a shareholder at HelloBetter, a digital mental health company developing digital interventions, and PersonalAIze, an AI consulting company. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures





References
-
- Singer S, Engesser D, Wirp B, Lang K, Paserat A, Kobes J, et al. Effects of a statutory reform on waiting times for outpatient psychotherapy: a multicentre cohort study. Couns Psychother Res. (2022) 22:982–97. 10.1002/capr.12581 - DOI
Publication types
LinkOut - more resources
Miscellaneous