Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jun 9;9(23):eadi1405.
doi: 10.1126/sciadv.adi1405. Epub 2023 Jun 7.

A structured jet explains the extreme GRB 221009A

Affiliations

A structured jet explains the extreme GRB 221009A

Brendan O'Connor et al. Sci Adv. .

Abstract

Long-duration gamma-ray bursts (GRBs) are powerful cosmic explosions, signaling the death of massive stars. Among them, GRB 221009A is by far the brightest burst ever observed. Because of its enormous energy (Eiso ≈ 1055 erg) and proximity (z ≈ 0.15), GRB 221009A is an exceptionally rare event that pushes the limits of our theories. We present multiwavelength observations covering the first 3 months of its afterglow evolution. The x-ray brightness decays as a power law with slope ≈t-1.66, which is not consistent with standard predictions for jetted emission. We attribute this behavior to a shallow energy profile of the relativistic jet. A similar trend is observed in other energetic GRBs, suggesting that the most extreme explosions may be powered by structured jets launched by a common central engine.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.. The extreme brightness of GRB 221009A.
(A) Top left: Histogram of gamma-ray fluence for Fermi (blue; 10 to 1000 keV) and BATSE (gray; 50 to 300 keV) GRBs compared to GRB 221009A. (B) Bottom left: Isotropic-equivalent gamma-ray energy (1 keV to 10 MeV) versus redshift for a sample of long-duration GRBs compiled from (44, 64). (C) Right: Observed x-ray afterglow light curves in the Swift XRT (03 to 10 keV) energy band for a sample of long-duration GRBs. GRB 221009A is the brightest x-ray afterglow ever observed.
Fig. 2.
Fig. 2.. Multiwavelength light curve of GRB 221009A.
The XRT and XMM-Newton data represent the x-ray flux density at 1 keV, whereas the flux density from the NuSTAR observations is reported at 5 keV. OIR data represented as empty squares were compiled from General Coordinates Network circulars, whereas filled circles are data analyzed in this work. The OIR data are not corrected for Galactic extinction.
Fig. 3.
Fig. 3.. Schematic of the structured jet for GRB 221009A.
Emission from the FS and RS are produced by the jet out to its truncation angle θs. The angular structure of the jet, EK/dΩ ∝ θa, breaks slightly at θb, transitioning from a slope a1 ∼ 0.75 to a2 ∼ 1.15. The prompt gamma rays may be radiated from the central narrow core of aperture θγ, whereas the afterglow and very-high energy (VHE) gamma-rays could come from a wider angular structure.
Fig. 4.
Fig. 4.. Afterglow spectral evolution.
Multiepoch broad-band spectral energy distributions (SEDs) of GRB 221009A modeled by the combination (solid line) of FS and RS (dotted line); see Materials and Methods. The data are corrected for extinction and absorption.
Fig. 5.
Fig. 5.. Long-lived x-ray light curves of bright GRBs.
A sample of bright long GRBs without a canonical jet break to late times is shown. For comparison, the dashed line shows the predicted late-time decay for a sharp-edged uniform jet.
Fig. 6.
Fig. 6.. Fluence distribution of Fermi GRBs.
We have normalized the number of bursts for the mission lifetime, its duty cycle, and field of view (1). At large fluences (S ≳ 5 × 10−5 erg cm−2) the distribution has a slope consistent with the Euclidean one (−3/2), also shown for comparison (dashed line). The two most fluent GRBs are GRB 130427A (circle) and GRB 221009A (star).
Fig. 7.
Fig. 7.. Multiepoch spectra and SEDs of GRB 221009A.
(A) Top: X-ray spectra of GRB 221009A fit an absorbed power-law model: Swift at 0.05 days, Swift and NuSTAR at 1.8 days, and XMM-Newton and NuSTAR at 32 days. (B) Middle: Residuals of the x-ray spectral fits. (C) Bottom left: Spectral energy distributions of the OIR data fit with a simple power-law model. The OIR data have been corrected for Galactic extinction E(B − V) = 1.32 mag (50). (D) Bottom right: Spectral energy distributions of the radio data (16.7 to 47 GHz).
Fig. 8.
Fig. 8.. Collimation corrected kinetic energy EK versus prompt gamma-ray energy Eγ.
We have displayed a sample of long GRBs from the literature (35, 38). The empty red star displays the lowerlimit to the energy of GRB 221009A in the top-hat jet scenario and the filled red star in the structured jet case. The gray-shaded regions show a range of allowed values for magnetar central engines based on the mass of the neutron star (NS) (26, 65). The black lines show a gamma-ray efficiency of ηγ = 30 to 80%.
Fig. 9.
Fig. 9.. Multiepoch broad-band SEDs of GRB 221009A.
We have modeled the data by the combination (solid line) of an FS and an RS (dotted line). A single RS evolved following the thin-shell closure relations (57) cannot reproduce the early optical and late radio emission. The data are corrected for extinction and absorption.

References

    1. von Kienlin A., Meegan C. A., Paciesas W. S., Bhat P. N., Bissaldi E., Briggs M. S., Burns E., Cleveland W. H., Gibby M. H., Giles M. M., Goldstein A., Hamburg R., Hui C. M., Kocevski D., Mailyan B., Malacaria C., Poolakkil S., Preece R. D., Roberts O. J., Veres P., Wilson-Hodge C. A., The fourth fermi-GBM gamma-ray burst catalog: A decade of data. Astrophys. J. 893, 46 (2020).
    1. Salvaterra R., Campana S., Vergani S. D., Covino S., D’Avanzo P., Fugazza D., Ghirlanda G., Ghisellini G., Melandri A., Nava L., Sbarufatti B., Flores H., Piranomonte S., Tagliaferri G., A complete sample of bright Swift long gamma-ray bursts. I. Sample presentation, luminosity function and evolution. Astrophys. J. 749, 68 (2012).
    1. Hjorth J., Malesani D., Jakobsson P., Jaunsen A. O., Fynbo J. P. U., Gorosabel J., Krühler T., Levan A. J., Michałowski M. J., Milvang-Jensen B., Møller P., Schulze S., Tanvir N. R., Watson D., The optically unbiased gamma-ray burst host (TOUGH) survey. I. Survey design and catalogs. Astrophys. J. 756, 187 (2012).
    1. Franceschini A., Rodighiero G., Vaccari M., Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity. Astron. Astrophys. 487, 837–852 (2008).
    1. Ajello M., Arimoto M., Axelsson M., Baldini L., Barbiellini G., Bastieri D., Bellazzini R., Bhat P. N., Bissaldi E., Blandford R. D., Bonino R., Bonnell J., Bottacini E., Bregeon J., Bruel P., Buehler R., Cameron R. A., Caputo R., Caraveo P. A., Cavazzuti E., Chen S., Cheung C. C., Chiaro G., Ciprini S., Costantin D., Crnogorcevic M., Cutini S., Dainotti M., D’Ammando F., Torre Luque P. d. l., Palma F., Desai A., Desiante R., Lalla N. D., Venere L. D., Dirirsa F. F., Fegan S. J., Franckowiak A., Fukazawa Y., Funk S., Fusco P., Gargano F., Gasparrini D., Giglietto N., Giordano F., Giroletti M., Green D., Grenier I. A., Grove J. E., Guiriec S., Hays E., Hewitt J. W., Horan D., Jóhannesson G., Kocevski D., Kuss M., Latronico L., Li J., Longo F., Loparco F., Lovellette M. N., Lubrano P., Maldera S., Manfreda A., Martí-Devesa G., Mazziotta M. N., Mereu I., Meyer M., Michelson P. F., Mirabal N., Mitthumsiri W., Mizuno T., Monzani M. E., Moretti E., Morselli A., Moskalenko I. V., Negro M., Nuss E., Ohno M., Omodei N., Orienti M., Orlando E., Palatiello M., Paliya V. S., Paneque D., Persic M., Pesce-Rollins M., Petrosian V., Piron F., Poolakkil S., Poon H., Porter T. A., Principe G., Racusin J. L., Rainò S., Rando R., Razzano M., Razzaque S., Reimer A., Reimer O., Reposeur T., Ryde F., Serini D., Sgrò C., Siskind E. J., Sonbas E., Spandre G., Spinelli P., Suson D. J., Tajima H., Takahashi M., Tak D., Thayer J. B., Torres D. F., Troja E., Valverde J., Veres P., Vianello G., von Kienlin A., Wood K., Yassine M., Zhu S., Zimmer S., A decade of gamma-ray bursts observed by Fermi-LAT: The second GRB catalog. Astrophys. J. 878, 52 (2019).