Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep 20:892:164660.
doi: 10.1016/j.scitotenv.2023.164660. Epub 2023 Jun 5.

Machine and deep learning for modelling heat-health relationships

Affiliations

Machine and deep learning for modelling heat-health relationships

Jérémie Boudreault et al. Sci Total Environ. .

Abstract

Extreme heat events pose a significant threat to population health that is amplified by climate change. Traditionally, statistical models have been used to model heat-health relationships, but they do not consider potential interactions between temperature-related and air pollution predictors. Artificial intelligence (AI) methods, which have gained popularity for health applications in recent years, can account for these complex and non-linear interactions, but have been underutilized in modelling heat-related health impacts. In this paper, six machine and deep learning models were considered to model the heat-mortality relationship in Montreal (Canada) and compared to three statistical models commonly used in the field. Decision Tree (DT), Random Forest (RF), Gradient Boosting Machine (GBM), Single- and Multi-Layer Perceptrons (SLP and MLP), Long Short-Term Memory (LSTM), Generalized Linear and Additive Models (GLM and GAM), and Distributed Lag Non-Linear Model (DLNM) were employed. Heat exposure was characterized by air temperature, relative humidity and wind speed, while air pollution was also included in the models using five pollutants. The results confirmed that air temperature at lags of up to 3 days was the most important variable for the heat-mortality relationship in all models. NO2 concentration and relative humidity (at lags 1 to 3 days) were also particularly important. Ensemble tree-based methods (GBM and RF) outperformed other approaches to model daily mortality during summer months based on three performance criteria. However, a partial validation during two recent major heatwaves highlighted that non-linear statistical models (GAM and DLNM) and simpler decision tree may more closely reproduce the spike of mortality observed during such events. Hence, both machine learning and statistical models are relevant for modelling heat-health relationships depending on the end user goal. Such extensive comparative analysis should be extended to other health outcomes and regions.

Keywords: Air pollution; Deep learning; Humidity; Machine learning; Mortality; Temperature.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources