Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug:214:115638.
doi: 10.1016/j.bcp.2023.115638. Epub 2023 Jun 7.

The CYP2E1 inhibitor Q11 ameliorates LPS-induced sepsis in mice by suppressing oxidative stress and NLRP3 activation

Affiliations

The CYP2E1 inhibitor Q11 ameliorates LPS-induced sepsis in mice by suppressing oxidative stress and NLRP3 activation

Na Gao et al. Biochem Pharmacol. 2023 Aug.

Abstract

Sepsis is an infection-induced, multi-organ system failure with a pathophysiology related to inflammation and oxidative stress. Increasing evidence indicates that cytochrome P450 2E1 (CYP2E1) is involved in the incidence and development of inflammatory diseases. However, a role for CYP2E1 in lipopolysaccharide (LPS)-induced sepsis has not been completely explored. Here we use Cyp2e1 knockout (cyp2e1-/-) mice to determine if CYP2E1 could be a therapeutic target for sepsis. We also evaluated the ability of Q11, a new specific CYP2E1 inhibitor, to prevent and ameliorate LPS-induced sepsis in mice and in LPS-treated J774A.1 and RAW264.7 cells. Cyp2e1 deletion significantly reduced hypothermia, multi-organ dysfunction and histological abnormalities in LPS-treated mice; consistent with this finding, the CYP2E1 inhibitor Q11 significantly prolonged the survival time of septic mice and ameliorated multi-organ injury induced by LPS. CYP2E1 activity in liver correlated with indicators of multi-organ injury, such as the level of lactate dehydrogenase (LDH) and blood urea nitrogen (BUN) (P < 0.05). Q11 significantly suppressed the expression of NLRP3 in tissues after LPS injection; in vitro studies revealed that activation of NLRP3 signaling and increase of ROS was attenuated by Q11 in LPS-stimulated macrophages, which was reflected by reduced expression of caspase-1 and formation of ASC specks. Overall, our results indicate that Q11 improves the survival of mice with LPS-induced sepsis and attenuates sepsis-induced multiple-organ injury, suggesting that CYP2E1 could be a therapeutic target for sepsis.

Keywords: CYP2E1; LPS; NLRP3; ROS; Sepsis; Specific inhibitor.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

MeSH terms

Substances