Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2023 May 17:2023.05.17.541187.
doi: 10.1101/2023.05.17.541187.

The phototrophic bacteria Rhodomicrobium spp. are novel chassis for bioplastic production

The phototrophic bacteria Rhodomicrobium spp. are novel chassis for bioplastic production

Eric M Conners et al. bioRxiv. .

Update in

Abstract

Polyhydroxybutyrate (PHB) is a bio-based, biodegradable alternative to petroleum-based plastics. PHB production at industrial scales remains infeasible, in part due to insufficient yields and high costs. Addressing these challenges requires identifying novel biological chassis for PHB production and modifying known biological chassis to enhance production using sustainable, renewable inputs. Here, we take the former approach and present the first description of PHB production by two prosthecate photosynthetic purple non-sulfur bacteria (PNSB), Rhodomicrobium vannielii and Rhodomicrobium udaipurense. We show that both species produce PHB across photoheterotrophic, photoautotrophic, photoferrotrophic, and photoelectrotrophic growth conditions. Both species show the greatest PHB titers during photoheterotrophic growth on butyrate with dinitrogen gas as a nitrogen source (up to 44.08 mg/L), while photoelectrotrophic growth demonstrated the lowest titers (up to 0.13 mg/L). These titers are both greater (photoheterotrophy) and less (photoelectrotrophy) than those observed previously in a related PNSB, Rhodopseudomonas palustris TIE-1. On the other hand, we observe the highest electron yields during photoautotrophic growth with hydrogen gas or ferrous iron electron donors, and these electron yields were generally greater than those observed previously in TIE-1. These data suggest that non model organisms like Rhodomicrobium should be explored for sustainable PHB production and highlights utility in exploring novel biological chassis.

PubMed Disclaimer

Publication types

LinkOut - more resources