Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Aug:88:102846.
doi: 10.1016/j.media.2023.102846. Epub 2023 May 23.

Diffusion models in medical imaging: A comprehensive survey

Affiliations
Review

Diffusion models in medical imaging: A comprehensive survey

Amirhossein Kazerouni et al. Med Image Anal. 2023 Aug.

Abstract

Denoising diffusion models, a class of generative models, have garnered immense interest lately in various deep-learning problems. A diffusion probabilistic model defines a forward diffusion stage where the input data is gradually perturbed over several steps by adding Gaussian noise and then learns to reverse the diffusion process to retrieve the desired noise-free data from noisy data samples. Diffusion models are widely appreciated for their strong mode coverage and quality of the generated samples in spite of their known computational burdens. Capitalizing on the advances in computer vision, the field of medical imaging has also observed a growing interest in diffusion models. With the aim of helping the researcher navigate this profusion, this survey intends to provide a comprehensive overview of diffusion models in the discipline of medical imaging. Specifically, we start with an introduction to the solid theoretical foundation and fundamental concepts behind diffusion models and the three generic diffusion modeling frameworks, namely, diffusion probabilistic models, noise-conditioned score networks, and stochastic differential equations. Then, we provide a systematic taxonomy of diffusion models in the medical domain and propose a multi-perspective categorization based on their application, imaging modality, organ of interest, and algorithms. To this end, we cover extensive applications of diffusion models in the medical domain, including image-to-image translation, reconstruction, registration, classification, segmentation, denoising, 2/3D generation, anomaly detection, and other medically-related challenges. Furthermore, we emphasize the practical use case of some selected approaches, and then we discuss the limitations of the diffusion models in the medical domain and propose several directions to fulfill the demands of this field. Finally, we gather the overviewed studies with their available open-source implementations at our GitHub.1 We aim to update the relevant latest papers within it regularly.

Keywords: Denoising diffusion models; Diffusion models; Generative models; Medical applications; Medical imaging; Noise conditioned score networks; Score-based models; Survey.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by