Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Aug:162:107081.
doi: 10.1016/j.compbiomed.2023.107081. Epub 2023 May 29.

EIU-Net: Enhanced feature extraction and improved skip connections in U-Net for skin lesion segmentation

Affiliations
Review

EIU-Net: Enhanced feature extraction and improved skip connections in U-Net for skin lesion segmentation

Zimin Yu et al. Comput Biol Med. 2023 Aug.

Abstract

Skin lesion segmentation is a computer-aided diagnosis method for quantitative analysis of melanoma that can improve efficiency and accuracy. Although many methods based on U-Net have achieved tremendous success, they still cannot handle challenging tasks well due to weak feature extraction. In response to skin lesion segmentation, a novel method called EIU-Net is proposed to tackle the challenging task. To capture the local and global contextual information, we employ inverted residual blocks and an efficient pyramid squeeze attention (EPSA) block as the main encoders at different stages, while atrous spatial pyramid pooling (ASPP) is utilized after the last encoder and the soft-pool method is introduced for downsampling. Also, we propose a novel method named multi-layer fusion (MLF) module to effectively fuse the feature distributions and capture significant boundary information of skin lesions in different encoders to improve the performance of the network. Furthermore, a reshaped decoders fusion module is used to obtain multi-scale information by fusing feature maps of different decoders to improve the final results of skin lesion segmentation. To validate the performance of our proposed network, we compare it with other methods on four public datasets, including the ISIC 2016, ISIC 2017, ISIC 2018, and PH2 datasets. And the main metric Dice scores achieved by our proposed EIU-Net are 0.919, 0.855, 0.902, and 0.916 on the four datasets, respectively, outperforming other methods. Ablation experiments also demonstrate the effectiveness of the main modules in our proposed network. Our code is available at https://github.com/AwebNoob/EIU-Net.

Keywords: Attention mechanism; Enhanced feature extraction; Multi-layer fusion; Multi-scale information; Skin lesion segmentation.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

LinkOut - more resources