Deploying automated machine learning for computer vision projects: a brief introduction for endoscopists
- PMID: 37303708
- PMCID: PMC10251677
- DOI: 10.1016/j.vgie.2023.02.012
Deploying automated machine learning for computer vision projects: a brief introduction for endoscopists
Abstract
Video 1Deploying automated machine learning for computer vision projects: a brief introduction for endoscopists.
© 2023 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc.
Figures
Similar articles
-
Machine vision methods for analyzing social interactions.J Exp Biol. 2017 Jan 1;220(Pt 1):25-34. doi: 10.1242/jeb.142281. J Exp Biol. 2017. PMID: 28057825 Review.
-
Otoscopic diagnosis using computer vision: An automated machine learning approach.Laryngoscope. 2020 Jun;130(6):1408-1413. doi: 10.1002/lary.28292. Epub 2019 Sep 18. Laryngoscope. 2020. PMID: 31532858
-
Design and Implementation of a UAV-Based Airborne Computing Platform for Computer Vision and Machine Learning Applications.Sensors (Basel). 2022 Mar 6;22(5):2049. doi: 10.3390/s22052049. Sensors (Basel). 2022. PMID: 35271196 Free PMC article.
-
Automated machine learning: Review of the state-of-the-art and opportunities for healthcare.Artif Intell Med. 2020 Apr;104:101822. doi: 10.1016/j.artmed.2020.101822. Epub 2020 Feb 21. Artif Intell Med. 2020. PMID: 32499001 Review.
-
Computer vision-based wood identification and its expansion and contribution potentials in wood science: A review.Plant Methods. 2021 Apr 28;17(1):47. doi: 10.1186/s13007-021-00746-1. Plant Methods. 2021. PMID: 33910606 Free PMC article. Review.
Cited by
-
Bridging the Gap: Exploring Opportunities, Challenges, and Problems in Integrating Assistive Technologies, Robotics, and Automated Machines into the Health Domain.Healthcare (Basel). 2023 Sep 4;11(17):2462. doi: 10.3390/healthcare11172462. Healthcare (Basel). 2023. PMID: 37685498 Free PMC article.
-
Transfer Learning Video Classification of Preserved, Mid-Range, and Reduced Left Ventricular Ejection Fraction in Echocardiography.Diagnostics (Basel). 2024 Jul 5;14(13):1439. doi: 10.3390/diagnostics14131439. Diagnostics (Basel). 2024. PMID: 39001328 Free PMC article.
References
-
- Glissen Brown J.R., Mansour N.M., Wang P., et al. Deep learning computer-aided polyp detection reduces adenoma miss rate: a United States multi-center randomized tandem colonoscopy study (CADeT-CS Trial) Clin Gastroenterol Hepatol. 2022;20:1499–1507.e4. - PubMed
-
- Chai J., Zeng H., Li A., et al. Deep learning in computer vision: a critical review of emerging techniques and application scenarios. Mach Learn Appl. 2021;6
-
- Waring J., Lindvall C., Umeton R. Automated machine learning: review of the state-of-the-art and opportunities for healthcare. Artif Intell Med. 2020;104 - PubMed
-
- Komer B., Bergstra J., Eliasmith C. Proceedings of the 13th Python in Science Conference. SciPy; 2014. Hyperopt-sklearn: automatic hyperparameter configuration for scikit-learn. Available at: https://conference.scipy.org/proceedings/scipy2014/pdfs/komer.pdf. Accessed April 4, 2023.
-
- Misawa M., Kudo S., Mori Y., et al. Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video) Gastrointest Endosc. 2021;93:960–967.e3. - PubMed
Publication types
LinkOut - more resources
Full Text Sources