Use of machine learning to predict bladder cancer survival outcomes: a systematic literature review
- PMID: 37306511
- DOI: 10.1080/14737167.2023.2224963
Use of machine learning to predict bladder cancer survival outcomes: a systematic literature review
Abstract
Introduction: The objective of this systematic review is to summarize the use of machine learning (ML) in predicting overall survival (OS) in patients with bladder cancer.
Methods: Search terms for bladder cancer, ML algorithms, and mortality were used to identify studies in PubMed and Web of Science as of February 2022. Notable inclusion/exclusion criteria contained the inclusion of studies that utilized patient-level datasets and exclusion of primary gene expression-related dataset studies. Study quality and bias were assessed using the International Journal of Medical Informatics (IJMEDI) checklist.
Results: Of the 14 included studies, the most common algorithms were artificial neural networks (n = 8) and logistic regression (n = 4). Nine articles described missing data handling, with five articles removing patients with missing data entirely. With respect to feature selection, the most common sociodemographic variables were age (n = 9), gender (n = 9), and smoking status (n = 3), with clinical variables most commonly including tumor stage (n = 8), grade (n = 7), and lymph node involvement (n = 6). Most studies (n = 10) were of medium IJMEDI quality, with common areas of improvement being the descriptions of data preparation and deployment.
Conclusions: ML holds promise for optimizing bladder cancer care through accurate OS predictions, but challenges related to data processing, feature selection, and data source quality must be resolved to develop robust models. While this review is limited by its inability to compare models across studies, this systematic review will inform decision-making by various stakeholders to improve understanding of ML-based OS prediction in bladder cancer and foster interpretability of future models.
Keywords: bladder cancer; machine learning; oncology; survival outcomes; systematic review.
Plain language summary
An analysis type known as machine learning has recently become popular to predict survival in bladder cancer patients. However, there is debate on how to best use this method, as well as how to report the results of studies. This review looks at recently published machine learning studies, comparing various model details. Most studies found used hospital data, were clear about model factors, and used a model type called artificial neural networks. While these studies may be better at prediction compared to previous methods, there are consistency and clarity issues. Future studies should ensure that models are explainable and relevant to healthcare leaders.
Similar articles
-
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.Health Technol Assess. 2001;5(32):1-195. doi: 10.3310/hta5320. Health Technol Assess. 2001. PMID: 12065068
-
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340. Health Technol Assess. 2006. PMID: 16959170
-
Home treatment for mental health problems: a systematic review.Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150. Health Technol Assess. 2001. PMID: 11532236
-
Eliciting adverse effects data from participants in clinical trials.Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2. Cochrane Database Syst Rev. 2018. PMID: 29372930 Free PMC article.
-
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.Health Technol Assess. 2001;5(28):1-110. doi: 10.3310/hta5280. Health Technol Assess. 2001. PMID: 11701100
Cited by
-
Avelumab first-line maintenance in advanced urothelial carcinoma: Complete screening for prognostic and predictive factors using machine learning in the JAVELIN Bladder 100 phase 3 trial.Cancer Med. 2024 Jun;13(12):e7411. doi: 10.1002/cam4.7411. Cancer Med. 2024. PMID: 38924353 Free PMC article. Clinical Trial.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical