Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Aug;46(8):3756-61.

Regulation of hypoxanthine DNA glycosylase in normal human and Bloom's syndrome fibroblasts

  • PMID: 3731054

Regulation of hypoxanthine DNA glycosylase in normal human and Bloom's syndrome fibroblasts

P Dehazya et al. Cancer Res. 1986 Aug.

Abstract

The regulation of the base excision repair enzyme hypoxanthine DNA glycosylase was examined in normal human skin fibroblasts (NHS) and fibroblasts from a patient with Bloom's syndrome. Using randomly proliferating cells and those synchronized at specific intervals in the cell cycle, enzyme levels were shown to become elevated severalfold in a proliferation-associated manner. In NHS synchronized in G0 by serum deprivation or in G1 by isoleucine deprivation, maximal enzyme levels were reached prior to maximal rates of DNA synthesis. In Bloom's syndrome cells synchronized in this manner, these two activities were coincident. Cells synchronized at the G1-S border by hydroxyurea exhibit an initial wave of DNA synthesis upon removal of the drug. The cells then undergo another DNA synthetic cycle climaxing 18-21 h after release. Maximal hypoxanthine glycosylase activity of hydroxyurea-synchronized Bloom's cells was observed during the second round of DNA synthesis. However, in NHS the peak of enzyme activity was observed as early as 9 h prior to the second round of DNA synthesis. To determine if hypoxanthine glycosylase could be induced in the absence of DNA synthesis, serum-synchronized NHS were released in the presence of hydroxyurea. The results showed that inhibition of DNA synthesis did not diminish glycosylase induction which demonstrated that DNA replication was not required for glycosylase induction.

PubMed Disclaimer

Publication types

LinkOut - more resources