Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 May 29:12:e62.
doi: 10.1017/jns.2023.44. eCollection 2023.

Determination of a steady-state isotope dilution protocol for carbon oxidation studies in the domestic cat

Affiliations

Determination of a steady-state isotope dilution protocol for carbon oxidation studies in the domestic cat

Julia Guazzelli Pezzali et al. J Nutr Sci. .

Abstract

The present study aimed to develop an isotope protocol to achieve equilibrium of 13CO2 in breath of cats during carbon oxidation studies using L-[1-13C]-Phenylalanine (L-[1-13C]-Phe), provided orally in repeated meals. One adult male cat was used in two experiments. In each experiment, three isotope protocols were tested in triplicate using the same cat. During carbon oxidation study days, the cat was offered thirteen small meals to achieve and maintain a physiological fed state. In experiment 1, the isotope protocols tested (A, B and C) had a similar priming dose of NaH13CO3 (0⋅176 mg/kg; offered in meal 6), but different priming [4⋅8 mg/kg (A) or 9⋅4 mg/kg (B and C); provided in meal 6] and constant [1⋅04 mg/kg (A and B) or 2⋅4 mg/kg (C); offered in meals 6-13] doses of L-[1-13C]-Phe. In experiment 2, the isotope protocols tested (D, E and F) had similar priming (4⋅8 mg/kg; provided in meal 5) and constant (1⋅04 mg/kg; provided in meals 5-13) doses of L-[1-13C]-Phe, but increasing priming doses of NaH13CO3 (D: 0⋅264, E: 0⋅352, F: 0⋅44 mg/kg; provided in meal 4). Breath samples were collected using respiration chambers (25-min intervals) and CO2 trapping to determine 13CO2:12CO2. Isotopic steady state was defined as the enrichment of 13CO2, above background samples, remaining constant in at least the last three samples. Treatment F resulted in the earliest achievement of 13CO2 steady state in the cat's breath. This feeding and isotope protocol can be used in future studies aiming to study amino acid metabolism in cats.

Keywords: Amino acid metabolism; Amino acid oxidation technique; Bicarbonate metabolism; Carnivore.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.
Feeding, isotope and sample protocol (treatment F in pilot trial 2) proposed to be utilised in IAAO studies in cats. aEach meal represented one-thirteenth of half of the daily food intake for the cat. bPriming dose of NaH13CO3 was top-dressed on the fourth meal (time: 45 min). cPriming dose of L-[1-13C]-Phenylalanine (L-[1-13C]-Phe) was top-dressed on the fifth meal. The continuous dose of L-[1-13C]-Phe started on the fifth meal with the priming dose, followed by continuous supply through the remaining meals. dIC: indirect calorimetry. Three 25-min measures of respiratory gases were obtained prior to feeding to obtain the resting volume of CO2 produced (VCO2). Starting at 45 min, VCO2 was measured in 25-min intervals for the duration of the study. eThree 25-min breath samples collection for 13CO2 background were obtained at −50, −25 and 0 min (fasted state) before food and isotope provision. One breath sample was collected at time −45 min before isotope provision for determination of 13CO2 background during fed state. Breath samples were then collected every 25 min for the duration of the study.
Fig. 2.
Fig. 2.
Pilot trial 1: (a) visual inspection (values are  ± sd) and (b) fitted broken-line linear model for 13CO2 expressed as atoms percent excess (APE) as a function of meal (25-min intervals). Isotope was provided orally over small meals. The priming dose (0⋅176 mg/kg) of NaH13CO3 remained similar among treatments (Trt), while the priming and constant doses of L-[1-13C]-Phe varied as follows. Trt A: priming dose: 4⋅8 mg/kg; constant dose: 1⋅04 mg/kg. Trt B: priming dose: 9⋅4 mg/kg; constant dose: 1⋅04 mg/kg. Trt C: priming dose: 9⋅4 mg/kg; constant dose: 2⋅4 mg/kg.
Fig. 3.
Fig. 3.
Pilot trial 1: (a) visual inspection (values are  ± sd) and (b) fitted broken-line linear (purple) or broken-line quadratic (blue) model for 13CO2 expressed as atoms percent excess (APE) as a function of meal (25-min intervals). Isotope was provided orally over small meals. The priming (4⋅8 mg/kg) and constant (1⋅04 mg/kg) doses of L-[1-13C]-Phe remained similar among treatments (Trt). The priming dose of NaH13CO3 varied across Trt D (0⋅264 mg/kg), Trt E (0⋅352 mg/kg) and Trt F (0⋅44 mg/kg).
Fig. 4.
Fig. 4.
Major metabolic fates of 13CO2 derived from oxidation of L-[1-13C]-phenylalanine.

Similar articles

Cited by

References

    1. Mitchell JR, Becker DE, Jensen AH, et al. (1968) Determination of amino acid needs of the young pig by nitrogen balance and plasma-free amino acids. J Anim Sci 27, 1327–1331.
    1. Sohail MA, Cole DJA & Lewis D (1978) Amino acid requirements of the breeding sows: the dietary lysine requirement during pregnancy. Br J Nutr 39, 463–468. - PubMed
    1. Pencharz PB & Ball RO (2003) Different approaches to define individual amino acid requirements. Annu Rev Nutr 23, 101–116. - PubMed
    1. Kim IY, Suh SH, Lee IK, et al. (2016) Applications of stable, nonradioactive isotope tracers in in vivo human metabolic research. Exp Mol Med 48, e203–e203. - PMC - PubMed
    1. Elango R, Ball RO & Pencharz PB (2008) Indicator amino acid oxidation: concept and application. J Nutr 138, 243–246. - PubMed

Publication types