Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jun 30;25(25):4638-4643.
doi: 10.1021/acs.orglett.3c01396. Epub 2023 Jun 15.

[3 + 2] Cycloadditions of Tertiary Amine N-Oxides and Silyl Imines as an Innovative Route to 1,2-Diamines

Affiliations

[3 + 2] Cycloadditions of Tertiary Amine N-Oxides and Silyl Imines as an Innovative Route to 1,2-Diamines

Sarah L Hejnosz et al. Org Lett. .

Abstract

We have developed a one-pot synthetic method for producing 1,2-diamines from easily prepared and commercially available precursors through a formal umpolung process. Our method utilizes an efficient [3 + 2] cycloaddition as the key step in forming substituted 1,2-diamines in moderate to high yields. These resulting compounds can undergo subsequent transformations, demonstrating their utility as synthetic building blocks for more complex scaffolds. Finally, we propose a reasonable mechanism for this transformation using density functional theory modeling, justifying the experimental observations.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Synthetic Methods Forming 1,2-Diamines Highlighting Common Disconnections
Scheme 2
Scheme 2. Three-Step One-Pot Synthesis Generating 1,2-Diamines
Scheme 3
Scheme 3. Substrate Scope of Silyl Imines and N-Oxides
Reactions carried on a 0.4–2.4 mmol scale. Conditions: N-oxide (1.0 equiv), LDA (3.0 equiv), THF (0.10 M), silyl imine (1.0 equiv), and from −78 °C to room temperature (RT); hydroxylamine hydrochloride (5.0 equiv), 1.2 M HCl (0.01 M), and 65 °C. The reaction was carried out on a 2.4 mmol scale. Hydroxylamine was not used.
Scheme 4
Scheme 4. Transformations of 1,2-Diamine 4a
Figure 1
Figure 1
Proposed mechanism for [3 + 2] cycloaddition of TMAO and a silyl imine.

Similar articles

Cited by

References

    1. Lucet D.; Le Gall T.; Mioskowski C. The Chemistry of Vicinal Diamines. Angew. Chem., Int. Ed. 1998, 37 (19), 2580–2627. 10.1002/(SICI)1521-3773(19981016)37:19<2580::AID-ANIE2580>3.0.CO;2-L. - DOI - PubMed
    2. Saibabu Kotti S. R. S.; Timmons C.; Li G. Vicinal Diamino Functionalities as Privileged Structural Elements in Biologically Active Compounds and Exploitation of their Synthetic Chemistry. Chem. Biol. Drug Des. 2006, 67 (2), 101–114. 10.1111/j.1747-0285.2006.00347.x. - DOI - PubMed
    3. Michalson E. T.; Szmuszkovicz J.. Medicinal agents incorporating the 1,2-diamine functionality. In Progress in Drug Research; Jucker E., Ed.; Birkhäuser: Basel, Switzerland, 1989; pp 135–149,10.1007/978-3-0348-9146-2_6. - DOI - PubMed
    4. Weerawarna S. A.; Davis R. D.; Nelson W. L. Isothiocyanate-Substituted. kappa.-Selective Opioid Receptor Ligands Derived from N-Methyl-N-[(1S)-1-phenyl-2-(1-pyrrolidinyl) ethyl] phenylacetamide. J. Med. Chem. 1994, 37 (18), 2856–2864. 10.1021/jm00044a006. - DOI - PubMed
    5. Chang A.-C.; Takemori A. E.; Ojala W. H.; Gleason W. B.; Portoghese P. S. κ Opioid Receptor Selective Affinity Labels: Electrophilic Benzeneacetamides as κ-Selective Opioid Antagonists. J. Med. Chem. 1994, 37 (26), 4490–4498. 10.1021/jm00052a008. - DOI - PubMed
    6. Malcolmson S. J.; Li K.; Shao X. 2-Azadienes as Enamine Umpolung Synthons for the Preparation of Chiral Amines. Synlett 2019, 30 (11), 1253–1268. 10.1055/s-0037-1611770. - DOI - PMC - PubMed
    7. Magano J. Synthetic Approaches to the Neuraminidase Inhibitors Zanamivir (Relenza) and Oseltamivir Phosphate (Tamiflu) for the Treatment of Influenza. Chem. Rev. 2009, 109 (9), 4398–4438. 10.1021/cr800449m. - DOI - PubMed
    1. Sheshenev A. E.; Boltukhina E. V.; White A. J. P.; Hii K. K. Methylene-Bridged Bis(imidazoline)-Derived 2-Oxopyrimidinium Salts as Catalysts for Asymmetric Michael Reactions. Angew. Chem., Int. Ed. 2013, 52 (27), 6988–6991. 10.1002/anie.201300614. - DOI - PMC - PubMed
    2. Sutton A. E.; Richardson T. E.; Huck B. R.; Karra S. R.; Chen X.; Xiao Y.; Goutopoulos A.; Lan R.; Perrey D.; Vandeveer H. G.; Liu-Bujalski L.; Stieber F.; Hodous B. L.; Qiu H.; Jones R. C.; Heasley B.. Preparation of novel aminoazaheterocyclic carboxamides useful in the treatment of hyperproliferative diseases. WO Patent 2010093419 A1, Aug 19, 2010.
    3. Perha Pharmaceuticals . Synthesis of imidazolone derivatives as DYRK1, CLK1 and/or CLK4 protein kinases. EP Patent 3904354 A1, Nov 3, 2021.
    4. Skerlj R.; Bridger G.; Zhou Y.; Bourque E.; McEachern E.; Metz M.; Harwig C.; Li T.-S.; Yang W.; Bogucki D.; Zhu Y.; Langille J.; Veale D.; Ba T.; Bey M.; Baird I.; Kaller A.; Krumpak M.; Leitch D.; Satori M.; Vocadlo K.; Guay D.; Nan S.; Yee H.; Crawford J.; Chen G.; Wilson T.; Carpenter B.; Gauthier D.; MacFarland R.; Mosi R.; Bodart V.; Wong R.; Fricker S.; Schols D. Design of Substituted Imidazolidinylpiperidinylbenzoic Acids as Chemokine Receptor 5 Antagonists: Potent Inhibitors of R5 HIV-1 Replication. J. Med. Chem. 2013, 56 (20), 8049–8065. 10.1021/jm401101p. - DOI - PubMed
    1. Gladiali S.; Alberico E. Asymmetric transfer hydrogenation: chiral ligands and applications. Chem. Soc. Rev. 2006, 35 (3), 226–236. 10.1039/B513396C. - DOI - PubMed
    2. Surry D. S.; Buchwald S. L. Diamine ligands in copper-catalyzed reactions. Chem. Sci. 2010, 1 (1), 13–31. 10.1039/c0sc00107d. - DOI - PMC - PubMed
    3. Ikariya T.; Blacker A. J. Asymmetric Transfer Hydrogenation of Ketones with Bifunctional Transition Metal-Based Molecular Catalysts. Acc. Chem. Res. 2007, 40 (12), 1300–1308. 10.1021/ar700134q. - DOI - PubMed
    4. Kizirian J.-C. Chiral Tertiary Diamines in Asymmetric Synthesis. Chem. Rev. 2008, 108 (1), 140–205. 10.1021/cr040107v. - DOI - PubMed
    5. Chierchia M.; Law C.; Morken J. P. Nickel-Catalyzed Enantioselective Conjunctive Cross-Coupling of 9-BBN Borates. Angew. Chem., Int. Ed. 2017, 56 (39), 11870–11874. 10.1002/anie.201706719. - DOI - PMC - PubMed
    1. Yadav J. S.; Reddy B. V. S.; Rao K. V.; Raj K. S.; Prasad A. R. Indium Tribromide Catalyzed Aminolysis of Aziridines: An Efficient Synthesis of vicinal-diamines. Synthesis 2002, 2002 (8), 1061–1064. 10.1055/s-2002-31965. - DOI
    2. Peruncheralathan S.; Henze M.; Schneider C. Scandium Triflate Catalyzed Aminolysis of meso-Aziridines. Synlett 2007, 2007 (14), 2289–2291. 10.1055/s-2007-984920. - DOI
    3. Uraguchi D.; Kinoshita N.; Kizu T.; Ooi T. Synergistic Catalysis of Ionic Brønsted Acid and Photosensitizer for a Redox Neutral Asymmetric α-Coupling of N-Arylaminomethanes with Aldimines. J. Am. Chem. Soc. 2015, 137 (43), 13768–13771. 10.1021/jacs.5b09329. - DOI - PubMed
    4. Cardona F.; Goti A. Metal-catalysed 1,2-diamination reactions. Nat. Chem. 2009, 1 (4), 269–275. 10.1038/nchem.256. - DOI - PubMed
    5. Gan X.-C.; Zhang C.-Y.; Zhong F.; Tian P.; Yin L. Synthesis of chiral anti-1,2-diamine derivatives through copper(I)-catalyzed asymmetric α-addition of ketimines to aldimines. Nat. Commun. 2020, 11 (1), 4473.10.1038/s41467-020-18235-9. - DOI - PMC - PubMed
    6. Lee S.; Jang Y. J.; Phipps E. J. T.; Lei H.; Rovis T. Rhodium(III)-Catalyzed Three-Component 1,2-Diamination of Unactivated Terminal Alkenes. Synlett 2020, 52 (8), 1247–1252. 10.1055/s-0039-1690756. - DOI - PMC - PubMed
    7. Olson D. E.; Su J. Y.; Roberts D. A.; Du Bois J. Vicinal Diamination of Alkenes under Rh-Catalysis. J. Am. Chem. Soc. 2014, 136 (39), 13506–13509. 10.1021/ja506532h. - DOI - PMC - PubMed
    8. Darensbourg D. J.; Karroonnirun O. Ring-Opening Polymerization of Lactides Catalyzed by Natural Amino-Acid Based Zinc Catalysts. Inorg. Chem. 2010, 49 (5), 2360–2371. 10.1021/ic902271x. - DOI - PubMed
    9. Kondaparla S.; Soni A.; Manhas A.; Srivastava K.; Puri S. K.; Katti S. B. Synthesis and antimalarial activity of new 4-aminoquinolines active against drug resistant strains. RSC Adv. 2016, 6 (107), 105676–105689. 10.1039/C6RA14016E. - DOI - PubMed
    10. Nakhla J. S.; Schultz D. M.; Wolfe J. P. Palladium-catalyzed alkene carboamination reactions for the synthesis of substituted piperazines. Tetrahedron 2009, 65 (33), 6549–6570. 10.1016/j.tet.2009.04.017. - DOI - PMC - PubMed
    11. Shen P.-X.; Hu L.; Shao Q.; Hong K.; Yu J.-Q. Pd(II)-Catalyzed Enantioselective C(sp3)–H Arylation of Free Carboxylic Acids. J. Am. Chem. Soc. 2018, 140 (21), 6545–6549. 10.1021/jacs.8b03509. - DOI - PMC - PubMed
    12. Vicker N.; Burgess L.; Chuckowree I. S.; Dodd R.; Folkes A. J.; Hardick D. J.; Hancox T. C.; Miller W.; Milton J.; Sohal S.; Wang S.; Wren S. P.; Charlton P. A.; Dangerfield W.; Liddle C.; Mistry P.; Stewart A. J.; Denny W. A. Novel Angular Benzophenazines: Dual Topoisomerase I and Topoisomerase II Inhibitors as Potential Anticancer Agents. J. Med. Chem. 2002, 45 (3), 721–739. 10.1021/jm010329a. - DOI - PubMed
    13. Wixey J. S.; Ward B. D. Chiral calciumcatalysts for asymmetric hydroamination /cyclisation. Chem. Commun. 2011, 47 (19), 5449–5451. 10.1039/C1CC11229E. - DOI - PubMed
    1. Kumar R.; Khanna Y.; Kaushik P.; Kamal R.; Khokhar S. Recent Advancements on Metal-Free Vicinal Diamination of Alkenes: Synthetic Strategies and Mechanistic Insights. Chem. - Asian J. 2023, 18 (8), e20230001710.1002/asia.202300017. - DOI - PubMed
    2. Zhou P.; Shao X.; Malcolmson S. J. A Diastereodivergent and Enantioselective Approach to syn- and anti-Diamines: Development of 2-Azatrienes for Cu-Catalyzed Reductive Couplings with Imines That Furnish Allylic Amines. J. Am. Chem. Soc. 2021, 143 (34), 13999–14008. 10.1021/jacs.1c07707. - DOI - PMC - PubMed
    3. Tao Z.; Gilbert B. B.; Denmark S. E. Catalytic, Enantioselective syn-Diamination of Alkenes. J. Am. Chem. Soc. 2019, 141 (48), 19161–19170. 10.1021/jacs.9b11261. - DOI - PMC - PubMed