Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jun 15;48(12):3127-3130.
doi: 10.1364/OL.491481.

Modified Mach-Zehnder interferometer for spatial coherence measurement

Modified Mach-Zehnder interferometer for spatial coherence measurement

F J Torcal-Milla et al. Opt Lett. .

Abstract

Spatial coherence of light sources is usually obtained by using the classical Young's interferometer. Although the original experiment was improved upon in successive works, some drawbacks still remain. For example, several pairs of points must be used to obtain the complex coherence degree (normalized first-order correlation function) of the source. In this work, a modified Mach-Zehnder interferometer which includes a pair of lenses and is able to measure the spatial coherence degree is presented. With this modified Mach-Zehnder interferometer, it is possible to measure the full 4D spatial coherence function by displacing the incoming beam laterally. To test it, we have measured only a 2D projection (zero shear) of the 4D spatial coherence, which is enough to characterize some types of sources. The setup has no movable parts, making it robust and portable. To test it, the two-dimensional spatial coherence of a high-speed laser with two cavities was measured for different pulse energy values. We observe from the experimental measurements that the complex degree of coherence changes with the selected output energy. Both laser cavities seem to have similar complex coherence degrees for the maximum energy, although it is not symmetrical. Thus, this analysis will allow us to determine the best configuration of the double-cavity laser for interferometric applications. Furthermore, the proposed approach can be applied to any other light sources.

PubMed Disclaimer

LinkOut - more resources