Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Apr 6;20(6):10428-10443.
doi: 10.3934/mbe.2023458.

A Data-Driven Intelligent Management Scheme for Digital Industrial Aquaculture based on Multi-object Deep Neural Network

Affiliations
Free article

A Data-Driven Intelligent Management Scheme for Digital Industrial Aquaculture based on Multi-object Deep Neural Network

Yueming Zhou et al. Math Biosci Eng. .
Free article

Abstract

With the development of intelligent aquaculture, the aquaculture industry is gradually switching from traditional crude farming to an intelligent industrial model. Current aquaculture management mainly relies on manual observation, which cannot comprehensively perceive fish living conditions and water quality monitoring. Based on the current situation, this paper proposes a data-driven intelligent management scheme for digital industrial aquaculture based on multi-object deep neural network (Mo-DIA). Mo-IDA mainly includes two aspects of fish state management and environmental state management. In fish state management, the double hidden layer BP neural network is used to build a multi-objective prediction model, which can effectively predict the fish weight, oxygen consumption and feeding amount. In environmental state management, a multi-objective prediction model based on LSTM neural network was constructed using the temporal correlation of water quality data series collection to predict eight water quality attributes. Finally, extensive experiments were conducted on real datasets and the evaluation results well demonstrated the effectiveness and accuracy of the Mo-IDA proposed in this paper.

Keywords: Intelligent aquaculture; fish state management; multi-object deep learning; water quality monitoring.

PubMed Disclaimer