Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jun 15;13(26):18108-18121.
doi: 10.1039/d3ra02166a. eCollection 2023 Jun 9.

Recovery of tetrodotoxin from pufferfish viscera extract by amine-functionalized magnetic nanocomposites

Affiliations

Recovery of tetrodotoxin from pufferfish viscera extract by amine-functionalized magnetic nanocomposites

Dang Thuan Tran et al. RSC Adv. .

Abstract

Tetrodotoxin (TTX) has been widely used in pharmacology, food poisoning analysis, therapeutic use, and neurobiology. In the last decades, the isolation and purification of TTX from natural sources (e.g., pufferfish) were mostly based on column chromatography. Recently, functional magnetic nanomaterials have been recognized as promising solid phases for the isolation and purification of bioactive compounds from aqueous matrices due to their effective adsorptive properties. Thus far, no studies have been reported on the utilization of magnetic nanomaterials for the purification of TTX from biological matrices. In this work, an effort has been made to synthesize Fe3O4@SiO2 and Fe3O4@SiO2-NH2 nanocomposites for the adsorption and recovery of TTX derivatives from a crude pufferfish viscera extract. The experimental data showed that Fe3O4@SiO2-NH2 displayed a higher affinity toward TTX derivatives than Fe3O4@SiO2, achieving maximal adsorption yields for 4epi-TTX, TTX, and Anh-TTX of 97.9, 99.6, and 93.8%, respectively, under the optimal conditions of contact time of 50 min, pH of 2, adsorbent dosage of 4 g L-1, initial adsorbate concentration of 1.92 mg L-1 4epi-TTX, 3.36 mg L-1 TTX and 1.44 mg L-1 Anh-TTX and temperature of 40 °C. Interestingly, desorption of 4epi-TTX, TTX, and Anh-TTX from Fe3O4@SiO2-NH2-TTX investigated at 50 °C was recorded to achieve the highest recovery yields of 96.5, 98.2, and 92.7% using 1% AA/ACN for 30 min reaction, respectively. Remarkably, Fe3O4@SiO2-NH2 can be regenerated up to three cycles with adsorptive performance remaining at nearly 90%, demonstrating a promising adsorbent for purifying TTX derivatives from pufferfish viscera extract and a potential replacement for resins used in column chromatography-based techniques.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Characteristics of Fe3O4, Fe3O4@SiO2, Fe3O4@SiO2–NH2, Fe3O4@SiO2-TTX, Fe3O4@SiO2–NH2-TTX. XRD (A), VSM (B), TGA (C), and FT-IR (D).
Fig. 2
Fig. 2. EDS spectra of Fe3O4 (A), Fe3O4@SiO2 (B), Fe3O4@SiO2–NH2 (C), Fe3O4@SiO2-TTX (D), Fe3O4@SiO2–NH2-TTX (E) and SEM image of Fe3O4 (F), Fe3O4@SiO2 (G), Fe3O4@SiO2–NH2 (H), Fe3O4@SiO2-TTX (I), Fe3O4@SiO2–NH2-TTX (J).
Fig. 3
Fig. 3. HPLC spectra of TTXs standards (A) and pufferfish viscera extract (B).
Fig. 4
Fig. 4. Variation of 4epi-TTX, TTX, and Anh-TTX concentrations over adsorption time by Fe3O4@SiO2 (A) and Fe3O4@SiO2–NH2 (B), adsorption yield (C), adsorption capacity (D) and adsorption rate of Fe3O4@SiO2 and Fe3O4@SiO2–NH2 (E). Adsorption conditions: temperature, 25 °C; pH, 7.0; stirring rate, 150 rpm; adsorbent dosage, 4 g L−1; initial adsorbate concentrations, 1.28 mg L−1 4epi-TTX, 2.24 mg L−1 TTX, and 0.96 mg L−1 Anh-TTX.
Fig. 5
Fig. 5. Adsorption yield of Fe3O4@SiO2 (A) and Fe3O4@SiO2–NH2 (B) for 4epi-TTX, TTX, and Anh-TTX under different pH. Adsorption conditions: temperature, 25 °C; stirring rate, 150 rpm; adsorbent dosage, 4 g L−1; initial adsorbate concentrations, 1.28 mg L−1 4epi-TTX, 2.24 mg L−1 TTX and 0.96 mg L−1 Anh-TTX; contact time, 50 min.
Fig. 6
Fig. 6. Adsorption yield of Fe3O4@SiO2 (A) and Fe3O4@SiO2–NH2 (B) for 4epi-TTX, TTX and Anh-TTX under different Fe3O4@SiO2 and Fe3O4@SiO2–NH2 dosages. Adsorption conditions: temperature, 25 °C; pH, 2.0; stirring rate, 150 rpm; initial adsorbate concentrations, 1.28 mg L−1 4epi-TTX, 2.24 mg L−1 TTX and 0.96 mg L−1 Anh-TTX; contact time, 50 min.
Fig. 7
Fig. 7. Adsorption capacity of Fe3O4@SiO2 and Fe3O4@SiO2–NH2 for 4epi-TTX (A), TTX (B) and Anh-TTX (C) under different initial concentrations of 4epi-TTX, TTX, and Anh-TTX. Adsorption conditions: temperature, 25 °C; pH, 2.0; stirring rate, 150 rpm; adsorbent dosage, 4 g L−1; contact time, 50 min.
Fig. 8
Fig. 8. Adsorption yield of Fe3O4@SiO2 (A) and Fe3O4@SiO2–NH2 (B) for 4epi-TTX, TTX, and Anh-TTX at different temperatures. Adsorption conditions: pH, 2.0; stirring rate, 150 rpm; adsorbent dosage, 4 g L−1; initial adsorbate concentrations, 1.92 mg L−1 4epi-TTX, 3.36 mg L−1 TTX, and 1.44 mg L−1 Anh-TTX; contact time, 50 min.
Fig. 9
Fig. 9. Recovery yield of 4epi-TTX, TTX, and Anh-TTX from Fe3O4@SiO2-TTX (A) and Fe3O4@SiO2–NH2-TTX (B) using different solvents. Adsorption conditions: temperature, 40 °C; pH, 2.0; stirring rate, 150 rpm; adsorbent dosage, 4 g L−1; initial adsorbate concentrations, 1.92 mg L−1 4epi-TTX, 3.36 mg L−1 TTX, and 1.44 mg L−1 Anh-TTX; contact time, 50 min. Desorption conditions: temperature: 50 °C, extraction time 30 min.
Fig. 10
Fig. 10. HPLC spectra of 4epi-TTX, TTX, and Anh-TTX recovered from Fe3O4@SiO2-TTX (A) and Fe3O4@SiO2–NH2-TTX (B) using 1% AA/ACN solvent.
Fig. 11
Fig. 11. Adsorptive performance of Fe3O4@SiO2 (A) and Fe3O4@SiO2–NH2 (B) for sequential adsorption and desorption of 4epi-TTX, TTX, and Anh-TTX. Adsorption conditions: temperature, 40 °C; pH, 2.0; stirring rate, 150 rpm; adsorbent dosage, 4 g L−1; initial adsorbate concentrations, 1.92 mg L−1 4epi-TTX, 3.36 mg L−1 TTX, and 1.44 mg L−1 Anh-TTX; contact time, 50 min. Desorption conditions: solvent, 1% AA/CAN; temperature, 50 °C; extraction time 30 min.

References

    1. T Goto Y. K. Takahashi S. Hirata Y. Tetrahedron. 1965;21:2059–2088. doi: 10.1016/S0040-4020(01)98344-9. - DOI - PubMed
    1. K Tsuda S. I. Kawamura M. Tachikawa R. Sakai K. Chem. Pharm. Bull. 1964;12:1357–1374. doi: 10.1248/cpb.12.1357. - DOI - PubMed
    1. Noguchi T. Arakawa O. Mar. Drugs. 2008;6:220–242. doi: 10.3390/md20080011. - DOI - PMC - PubMed
    1. Lee C. H. Ruben P. C. Channels. 2008;2:407–412. doi: 10.4161/chan.2.6.7429. - DOI - PubMed
    1. Nieto F. R. Cobos E. J. Tejada M. A. Sanchez-Fernandez C. Gonzalez-Cano R. Cendan C. M. Mar. Drugs. 2012;10:281–305. doi: 10.3390/md10020281. - DOI - PMC - PubMed