Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jun 28;15(25):30443-30454.
doi: 10.1021/acsami.3c04043. Epub 2023 Jun 16.

Highly Responsive Near-Infrared Si/Sb2Se3 Photodetector via Surface Engineering of Silicon

Affiliations

Highly Responsive Near-Infrared Si/Sb2Se3 Photodetector via Surface Engineering of Silicon

Yogesh Singh et al. ACS Appl Mater Interfaces. .

Abstract

The development of imaging technology and optical communication demands a photodetector with high responsiveness. As demonstrated by microfabrication and nanofabrication technology advancements, recent progress in plasmonic sensor technologies can address this need. However, these photodetectors have low optical absorption and ineffective charge carrier transport efficiency. Sb2Se3 is light-sensitive material with a high absorption coefficient, making it suitable for photodetector applications. We developed an efficient, scalable, low-cost near-infrared (NIR) photodetector based on a nanostructured Sb2Se3 film deposited on p-type micropyramidal Si (made via the wet chemical etching process), working on photoconductive phenomena. Our results proved that, at the optimized thickness of the Sb2Se3 layer, the proposed Si micropyramidal substrate enhanced the responsivity nearly two times, compared with that of the Sb2Se3 deposited on a flat Si reference sample and a glass/Sb2Se3 sample at 1064 nm (power density = 15 mW/cm2). More interestingly, the micropyramidal silicon-based device worked at 0 V bias, paving a path for self-bias devices. The highest specific detectivity of 2.25 × 1015 Jones was achieved at 15 mW/cm2 power density at a bias voltage of 0.5 V. It is demonstrated that the enhanced responsivity was closely linked with field enhancement due to the Kretschmann configuration of Si pyramids, which acts as hot spots for Si/Sb2Se3 junction. A high responsivity of 47.8 A W-1 proved it suitable for scalable and cost-effective plasmonic-based NIR photodetectors.

Keywords: Carrier lifetime; Photodetector; Sb2Se3; Surface engineering; Surface plasmon.

PubMed Disclaimer

LinkOut - more resources